ﻻ يوجد ملخص باللغة العربية
Transportation service providers that dispatch drivers and vehicles to riders start to support both on-demand ride requests posted in real time and rides scheduled in advance, leading to new challenges which, to the best of our knowledge, have not been addressed by existing works. To fill the gap, we design novel trip-vehicle dispatch algorithms to handle both types of requests while taking into account an estimated request distribution of on-demand requests. At the core of the algorithms is the newly proposed Constrained Spatio-Temporal value function (CST-function), which is polynomial-time computable and represents the expected value a vehicle could gain with the constraint that it needs to arrive at a specific location at a given time. Built upon CST-function, we design a randomized best-fit algorithm for scheduled requests and an online planning algorithm for on-demand requests given the scheduled requests as constraints. We evaluate the algorithms through extensive experiments on a real-world dataset of an online ride-hailing platform.
Effective placement of charging stations plays a key role in Electric Vehicle (EV) adoption. In the placement problem, given a set of candidate sites, an optimal subset needs to be selected with respect to the concerns of both (a) the charging statio
With the rising demand of smart mobility, ride-hailing service is getting popular in the urban regions. These services maintain a system for serving the incoming trip requests by dispatching available vehicles to the pickup points. As the process sho
As an economical and healthy mode of shared transportation, Bike Sharing System (BSS) develops quickly in many big cities. An accurate prediction method can help BSS schedule resources in advance to meet the demands of users, and definitely improve o
Given the rise of electric vehicle (EV) adoption, supported by government policies and dropping technology prices, new challenges arise in the modeling and operation of electric transportation. In this paper, we present a model for solving the EV rou
We design a dispatch system to improve the peak service quality of video on demand (VOD). Our system predicts the hot videos during the peak hours of the next day based on the historical requests, and dispatches to the content delivery networks (CDNs