ﻻ يوجد ملخص باللغة العربية
Effective placement of charging stations plays a key role in Electric Vehicle (EV) adoption. In the placement problem, given a set of candidate sites, an optimal subset needs to be selected with respect to the concerns of both (a) the charging station service provider, such as the demand at the candidate sites and the budget for deployment, and (b) the EV user, such as charging station reachability and short waiting times at the station. This work addresses these concerns, making the following three novel contributions: (i) a supervised multi-view learning framework using Canonical Correlation Analysis (CCA) for demand prediction at candidate sites, using multiple datasets such as points of interest information, traffic density, and the historical usage at existing charging stations; (ii) a mixed-packing-and- covering optimization framework that models competing concerns of the service provider and EV users; (iii) an iterative heuristic to solve these problems by alternately invoking knapsack and set cover algorithms. The performance of the demand prediction model and the placement optimization heuristic are evaluated using real world data.
Even with state-of-the-art defense mechanisms, cyberattacks in the electric power distribution sector are commonplace. Particularly alarming are load-altering (demand-side) cyberattacks launched through high-wattage assets, which are not continuously
Electric vehicles (EVs) have been growing rapidly in popularity in recent years and have become a future trend. It is an important aspect of user experience to know the Remaining Charging Time (RCT) of an EV with confidence. However, it is difficult
Based on the electric vehicle (EV) arrival times and the duration of EV connection to the charging station, we identify charging patterns and derive groups of charging stations with similar charging patterns applying two approaches. The ruled based a
We describe the architecture and algorithms of the Adaptive Charging Network (ACN), which was first deployed on the Caltech campus in early 2016 and is currently operating at over 100 other sites in the United States. The architecture enables real-ti
The number of electric vehicles (EVs) is expected to increase. As a consequence, more EVs will need charging, potentially causing not only congestion at charging stations, but also in the distribution grid. Our goal is to illustrate how this gives ri