ترغب بنشر مسار تعليمي؟ اضغط هنا

Floquet-engineered vibrational dynamics in a two-dimensional array of trapped ions

96   0   0.0 ( 0 )
 نشر من قبل Philip Kiefer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate Floquet engineering in a basic yet scalable 2D architecture of individually trapped and controlled ions. Local parametric modulations of detuned trapping potentials steer the strength of long-range inter-ion couplings and the related Peierls phase of the motional state. In our proof-of-principle, we initialize large coherent states and tune modulation parameters to control trajectories, directions and interferences of the phonon flow. Our findings open a new pathway for future Floquet-based trapped-ion quantum simulators targeting correlated topological phenomena and dynamical gauge fields.

قيم البحث

اقرأ أيضاً

A custom-built and precisely controlled quantum system may offer access to a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analog quantum simulator that makes the relevant observables, interactions, and states of a quantum model accessible could permit experimental insight into complex quantum dynamics that are intractable on conventional computers. Several platforms have been suggested and proof-of-principle experiments have been conducted. Here we characterise two-dimensional arrays of three ions trapped by radio-frequency fields in individually controlled harmonic wells forming equilateral triangles with side lengths 40 and 80 micrometer. In our approach, which is scalable to arbitrary two dimensional lattices, we demonstrate individual control of the electronic and motional degrees of freedom, preparation of a fiducial initial state with ion motion close to the ground state, as well as tuning of crucial couplings between ions within experimental sequences. Our work paves the way towards an analog quantum simulator of two-dimensional systems designed at will.
When trapped atoms are illuminated by weak lasers, off-resonant transitions cause shifts in the frequencies of the vibrational-sideband resonances. These frequency shifts may be understood in terms of Stark-shifts of the individual levels or, as prop osed here, as a vibrational Bloch-Siegert shift, an effect closely related to the usual (radio-frequency or optical) Bloch-Siegert shift and associated with rapidly oscillating terms when the Rotating Wave Approximation is not made. Explicit analytic expressions are derived and compared to numerical results, and the similarities and differences between the usual and the vibrational Bloch-Siegert shifts are also spelled out.
Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource, beyond the role as a mediator for entangling quantum operations on internal degrees of freedom, because of the large available Hilbert s pace. The vibrational modes can be represented as quantum harmonic oscillators and thus offer a Hilbert space with infinite dimension. Here we review recent theoretical and experimental progress in the coherent manipulation of the vibrational modes, including bosonic encoding schemes in quantum information, reliable and efficient measurement techniques, and quantum operations that allow various quantum simulations and quantum computation algorithms. We describe experiments using the vibrational modes, including the preparation of non-classical states, molecular vibronic sampling, and applications in quantum thermodynamics. We finally discuss the potential prospects and challenges of trapped-ion vibrational-mode quantum information processing.
We design fast protocols to separate or recombine two ions in a segmented Paul trap. By inverse engineering the time evolution of the trapping potential composed of a harmonic and a quartic term, it is possible to perform these processes in a few mic roseconds without final excitation. These times are much shorter than the ones reported so far experimentally. The design is based on dynamical invariants and dynamical normal modes. Anharmonicities beyond the harmonic approximation at potential minima are taken into account perturbatively. The stability versus an unknown potential bias is also studied.
We describe rapid, random-access loading of a two-dimensional (2D) surface-electrode ion-trap array based on two crossed photo-ionization laser beams. With the use of a continuous flux of pre-cooled neutral atoms from a remotely-located source, we ac hieve loading of a single ion per site while maintaining long trap lifetimes and without disturbing the coherence of an ion quantum bit in an adjacent site. This demonstration satisfies all major criteria necessary for loading and reloading extensive 2D arrays, as will be required for large-scale quantum information processing. Moreover, the already high loading rate can be increased by loading ions in parallel with only a concomitant increase in photo-ionization laser power and no need for additional atomic flux.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا