ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum computation and simulation with vibrational modes of trapped ions

106   0   0.0 ( 0 )
 نشر من قبل Kihwan Kim
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource, beyond the role as a mediator for entangling quantum operations on internal degrees of freedom, because of the large available Hilbert space. The vibrational modes can be represented as quantum harmonic oscillators and thus offer a Hilbert space with infinite dimension. Here we review recent theoretical and experimental progress in the coherent manipulation of the vibrational modes, including bosonic encoding schemes in quantum information, reliable and efficient measurement techniques, and quantum operations that allow various quantum simulations and quantum computation algorithms. We describe experiments using the vibrational modes, including the preparation of non-classical states, molecular vibronic sampling, and applications in quantum thermodynamics. We finally discuss the potential prospects and challenges of trapped-ion vibrational-mode quantum information processing.



قيم البحث

اقرأ أيضاً

Thermodynamics is one of the oldest and well-established branches of physics that sets boundaries to what can possibly be achieved in macroscopic systems. While it started as a purely classical theory, it was realized in the early days of quantum mec hanics that large quantum devices, such as masers or lasers, can be treated with the thermodynamic formalism. Remarkable progress has been made recently in the miniaturization of heat engines all the way to the single Brownian particle as well as to a single atom. However, despite several theoretical proposals, the implementation of heat machines in the fully quantum regime remains a challenge. Here, we report an experimental realization of a quantum absorption refrigerator in a system of three trapped ions, with three of its normal modes of motion coupled by a trilinear Hamiltonian such that heat transfer between two modes refrigerates the third. We investigate the dynamics and steady-state properties of the refrigerator and compare its cooling capability when only thermal states are involved to the case when squeezing is employed as a quantum resource. We also study the performance of such a refrigerator in the single shot regime, and demonstrate cooling below both the steady-state energy and the benchmark predicted by the classical thermodynamics treatment.
Measurement-based quantum computation (MBQC) represents a powerful and flexible framework for quantum information processing, based on the notion of entangled quantum states as computational resources. The most prominent application is the one-way qu antum computer, with the cluster state as its universal resource. Here we demonstrate the principles of MBQC using deterministically generated graph states of up to 7 qubits, in a system of trapped atomic ions. Firstly we implement a universal set of operations for quantum computing. Secondly we demonstrate a family of measurement-based quantum error correction codes, and show their improved performance as the code length is increased. We show that all our graph states violate a multipartite Bell inequality and are therefore capable of information processing tasks that cannot be described by a local hidden variable model. The methods presented can directly be scaled up to generate graph states of several tens of qubits.
A system of harmonic oscillators coupled via nonlinear interaction is a fundamental model in many branches of physics, from biophysics to electronics and condensed matter physics. In quantum optics, weak nonlinear interaction between light modes has enabled, for example, the preparation of squeezed states of light and generation of entangled photon pairs. While strong nonlinear interaction between the modes has been realized in circuit QED systems, achieving significant interaction strength on the level of single quanta in other physical systems remains a challenge. Here we experimentally demonstrate such interaction that is equivalent to photon up- and down-conversion using normal modes of motion in a system of two Yb ions. The nonlinearity is induced by the intrinsic anharmonicity of the Coulomb interaction between the ions and can be used to simulate fully quantum operation of a degenerate optical parametric oscillator. We exploit this interaction to directly measure the parity and Wigner functions of ion motional states. The nonlinear coupling, combined with near perfect control of internal and motional states of trapped ions, can be applied to quantum computing, quantum thermodynamics, and even shed some light on the quantum information aspects of Hawking radiation.
The hybrid approach to quantum computation simultaneously utilizes both discrete and continuous variables which offers the advantage of higher density encoding and processing powers for the same physical resources. Trapped ions, with discrete interna l states and motional modes which can be described by continuous variables in an infinite dimensional Hilbert space, offer a natural platform for this approach. A nonlinear gate for universal quantum computing can be implemented with the conditional beam splitter Hamiltonian $|erangle langle e| ( a^{dagger} b + a b^{dagger})$ that swaps the quantum states of two motional modes, depending on the ions internal state. We realize such a gate and demonstrate its applications for quantum state overlap measurements, single-shot parity measurement, and generation of NOON states.
Cold atoms and ions exhibit unparalleled performance in frequency metrology epitomized in the atomic clock. More recently, such atomic systems have been used to implement programmable quantum computers and simulators with highest reported operational fidelities across platforms. Their strength in metrology and quantum information processing offers the opportunity to utilize tailored, programmable entanglement generation to approach the `optimal quantum sensor compatible with quantum mechanics. Here we report quantum enhancement in metrology beyond squeezing through low-depth, variational quantum circuits searching for optimal input states and measurement operators in a trapped ion platform. We perform entanglement-enhanced Ramsey interferometry finding optimal parameters for variational quantum circuits using a Bayesian approach to stochastic phase estimation tailored to the sensor platform capabilities and finite dynamic range of the interferometer. We verify the performance by both directly using theory predictions of optimal parameters, and performing online quantum-classical feedback optimization to `self-calibrate the variational parameters. In both cases we find that variational circuits outperform classical and direct spin squeezing strategies under realistic noise and imperfections. With 26 ions we achieve 2.02(8) dB of metrological gain over classical interferometers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا