ﻻ يوجد ملخص باللغة العربية
A custom-built and precisely controlled quantum system may offer access to a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analog quantum simulator that makes the relevant observables, interactions, and states of a quantum model accessible could permit experimental insight into complex quantum dynamics that are intractable on conventional computers. Several platforms have been suggested and proof-of-principle experiments have been conducted. Here we characterise two-dimensional arrays of three ions trapped by radio-frequency fields in individually controlled harmonic wells forming equilateral triangles with side lengths 40 and 80 micrometer. In our approach, which is scalable to arbitrary two dimensional lattices, we demonstrate individual control of the electronic and motional degrees of freedom, preparation of a fiducial initial state with ion motion close to the ground state, as well as tuning of crucial couplings between ions within experimental sequences. Our work paves the way towards an analog quantum simulator of two-dimensional systems designed at will.
Quantum mechanics dominates various effects in modern research from miniaturizing electronics, up to potentially ruling solid-state physics, quantum chemistry and biology. To study these effects experimental quantum systems may provide the only effec
We examine the viability of quantum repeaters based on two-species trapped ion modules for long distance quantum key distribution. Repeater nodes comprised of ion-trap modules of co-trapped ions of distinct species are considered. The species used fo
We demonstrate Floquet engineering in a basic yet scalable 2D architecture of individually trapped and controlled ions. Local parametric modulations of detuned trapping potentials steer the strength of long-range inter-ion couplings and the related P
A system of harmonic oscillators coupled via nonlinear interaction is a fundamental model in many branches of physics, from biophysics to electronics and condensed matter physics. In quantum optics, weak nonlinear interaction between light modes has
Cold atoms and ions exhibit unparalleled performance in frequency metrology epitomized in the atomic clock. More recently, such atomic systems have been used to implement programmable quantum computers and simulators with highest reported operational