ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-narrowband selective tunable filters for visible and infrared wavelength ranges

99   0   0.0 ( 0 )
 نشر من قبل Ivan Isaev
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction of non-monochromatic radiation with two types of arrays comprising both plasmonic and dielectric nanoparticles has been studied in detail. We have shown that dielectric nanoparticle arrays provide a complete selective reflection of an incident plane wave within a narrow spectral line of collective lattice resonance with a Q-factor of $10^3$ or larger, whereas plasmonic refractory TiN and chemically stable Au nanoparticle arrays demonstrated high-Q resonances with moderate reflectivity. The spectral position of these resonance lines is determined by the lattice period, as well as the size, shape and material composition of the particles. Moreover, the arrays, with fixed dimensional parameters make it possible to fine-tune the position of a selected resonant spectral line by tilting the array relative to the direction of the incident radiation. These effects provide possibilities for engineering of novel selective tunable optical high-Q filters in a wide range of wavelengths: from visible to middle IR. Several highly refractive dielectric nanoparticle materials with low absorption are proposed for various spectral ranges, such as LiNbO$_3$, TiO$_2$, GaAs, Si, and Ge.

قيم البحث

اقرأ أيضاً

OSIRIS (Optical System for Imaging and low Resolution Integrated Spectroscopy) is the first light instrument of the Gran Telescopio Canarias (GTC). It provides a flexible and competitive tunable filter (TF). Since it is based on a Fabry-Perot interfe rometer working in collimated beam, the TF transmission wavelength depends on the position of the target with respect to the optical axis. This effect is non-negligible and must be accounted for in the data reduction. Our paper establishes a wavelength calibration for OSIRIS TF with the accuracy required for spectrophotometric measurements using the full field of view (FOV) of the instrument. The variation of the transmission wavelength $lambda(R)$ across the FOV is well described by $lambda(R)=lambda(0)/sqrt{1+(R/f_2)^2}$, where $lambda(0)$ is the central wavelength, $R$ represents the physical distance from the optical axis, and $f_2=185.70pm0.17,$mm is the effective focal length of the camera lens. This new empirical calibration yields an accuracy better than 1,AA across the entire OSIRIS FOV ($sim$8arcmin$times$8arcmin), provided that the position of the optical axis is known within 45 $mu$m ($equiv$ 1.5 binned pixels). We suggest a calibration protocol to grant such precision over long periods, upon re-alignment of OSIRIS optics, and in different wavelength ranges. This calibration differs from the calibration in OSIRIS manual which, nonetheless, provides an accuracy $lesssim1$AA, for $Rlesssim 2arcmin$.
In this white paper, we present the scientific cases for adding narrowband optical filters to the Large Synoptic Survey Telescope (LSST). LSST is currently planning to observe the southern sky in 6 broadband optical filters. Three of the four LSST sc ience themes would benefit from adding narrowband filter observations. We discuss the technical considerations of using narrowband filters with the LSST and lay out the scientific impact that would result on the study of AGB stars, emission line nebula (e.g., supernova remnants and planetary nebulae), photometric redshifts of galaxies, and the determination of stellar parameters.
We discuss propagation effects in realistic, transparent, metallo-dielectric photonic band gap structures in the context of negative refraction and super-resolution in the visible and near infrared ranges. In the resonance tunneling regime, we find t hat for transverse-magnetic incident polarization, field localization effects contribute to a waveguiding phenomenon that makes it possible for the light to remain confined within a small fraction of a wavelength, without any transverse boundaries, due to the suppression of diffraction. This effect is related to negative refraction of the Poynting vector inside each metal layer, balanced by normal refraction inside the adjacent dielectric layer: The degree of field localization and material dispersion together determine the total momentum that resides within any given layer, and thus the direction of energy flow. We find that the transport of evanescent wave vectors is mediated by the excitation of quasi-stationary, low group velocity surface waves responsible for relatively large losses. As representative examples we consider transparent metallo-dielectric stacks such as Ag/TiO2 and Ag/GaP and show in detail how to obtain the optimum conditions for high transmittance of both propagating and evanescent modes for super-guiding and super resolution applications across the visible and near IR ranges. Finally, we study the influence of gain on super-resolution. We find that the introduction of gain can compensate the losses caused by the excitation of surface plasmons, improves the resolving characteristics of the lens, and leads to gain-tunable super-resolution.
We demonstrate a wavelength-tunable, fiber-coupled source of polarization-entangled photons with extremely high spectral brightness and quality of entanglement. Using a 25 mm PPKTP crystal inside a polarization Sagnac interferometer we detect a spect ral brightness of 273000 pairs/(s mW nm), a factor of 28 better than comparable previous sources while state tomography showed the two-photon state to have a tangle of T=0.987. This improvement was achieved by use of a long crystal, careful selection of focusing parameters and single-mode fiber coupling. We demonstrate that, due to the particular geometry of the setup, the signal and idler wavelengths can be tuned over a wide range without loss of entanglement.
In this paper, we will introduce THz graphene antennas that strongly enhance the emission rate of quantum systems at specific frequencies. The tunability of these antennas can be used to selectively enhance individual spectral features. We will show as an example that any weak transition in the spectrum of coronene can become the dominant contribution. This selective and tunable enhancement establishes a new class of graphene-based THz devices, which will find applications in sensors, novel light sources, spectroscopy, and quantum communication devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا