ﻻ يوجد ملخص باللغة العربية
In this paper, we will introduce THz graphene antennas that strongly enhance the emission rate of quantum systems at specific frequencies. The tunability of these antennas can be used to selectively enhance individual spectral features. We will show as an example that any weak transition in the spectrum of coronene can become the dominant contribution. This selective and tunable enhancement establishes a new class of graphene-based THz devices, which will find applications in sensors, novel light sources, spectroscopy, and quantum communication devices.
Graphene, a unique two-dimensional material of carbon in a honeycomb lattice, has brought remarkable breakthroughs across the domains of electronics, mechanics, and thermal transport, driven by the quasiparticle Dirac fermions obeying a linear disper
Graphene is an ideal material for integrated nonlinear optics thanks to its strong light-matter interaction and large nonlinear optical susceptibility. Graphene has been used in optical modulators, saturable absorbers, nonlinear frequency converters,
Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distingu
We demonstrate a novel scheme to dramatically enhance both the second- and third-harmonic generation in a graphene-insulator-graphene metasurface. The key underlying feature of our approach is the existence of a double-resonance phenomenon, namely th
Plasmonic enhancement of nonlinear optical processes confront severe limitations arising from the strong dispersion of metal susceptibilities and small interaction volumes that hamper desirable phase-matching-like conditions. Maximizing nonlinear int