ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative Study on Current-Induced Effect in an Antiferromagnet Insulator/Pt Bilayer Film

169   0   0.0 ( 0 )
 نشر من قبل Pengxiang Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantitative investigation on the current-induced torque in antiferromagnets represents a great challenge, due to the lack of an independent method for controlling Neel vectors. Here by utilizing an antiferromagnetic insulator with Dzyaloshinskii-Moriya interaction, {alpha}-Fe2O3, we show that the Neel vector can be controlled with a moderate external field, which is further utilized to calibrate the current-induced magnetic dynamics. We find that the current-induced magnetoresistance change in antiferromagnets can be complicated by resistive switching that does not have a magnetic origin. By excluding non-magnetic switching and comparing the current-induced dynamics with the field-induced one, we determine the nature and magnitude of current-induced effects in Pt/{alpha}-Fe2O3 bilayer films.


قيم البحث

اقرأ أيضاً

We develop a self-consistent theory for current-induced spin wave excitations in normal metal-magnetic insulator bilayer systems, thereby establishing the relation between spin wave excitation and the experimentally controlled parameters. We fully ta ke into account the complex spin wave spectrum including dipolar interactions and surface anisotropy as well as the spin-pumping at the interface. Our results focus on the mode-dependent power close to the critical currents for spin wave excitation. The major findings are (a) the spin transfer torque can excite different spin-wave modes simultaneously; (b) spin pumping counterbalances spin-transfer torque and affects the surface modes more than the bulk modes; (c) spin pumping inhibits high frequency spin-wave modes, thereby redshifting the excitation spectrum. We can get agreement with experiments on yttrium iron garnet|platinum bilayers by postulating the existence of surface anisotropy modes.
We investigate the current-induced spin-orbit torque in thin topological insulator (TI) films in the presence of hybridization between the top and bottom surface states. We formulate the relation between spin torque and TI thickness, from which we de rived the optimal value of the thickness to maximize the torque. We show numerically that in typical TI thin films made of $mathrm{Bi_2Se_3}$, the optimal thickness is about 3-5 nm.
When charge current passes through a normal metal that exhibits spin Hall effect, spin accumulates at the edge of the sample in the transverse direction. We predict that this spin accumulation, or spin voltage, enables quantum tunneling of spin throu gh an insulator or vacuum to reach a ferromagnet without transferring charge. In a normal metal/insulator/ferromagnetic insulator trilayer (such as Pt/oxide/YIG), the quantum tunneling explains the spin-transfer torque and spin pumping that exponentially decay with the thickness of the insulator. In a normal metal/insulator/ferromagnetic metal trilayer (such as Pt/oxide/Co), the spin transfer in general does not decay monotonically with the thickness of the insulator. Combining with the spin Hall magnetoresistance, this tunneling mechanism points to the possibility of a new type of tunneling spectroscopy that can probe the magnon density of states of a ferromagnetic insulator in an all-electrical and noninvasive manner.
Magnetic skyrmions are chiral spin textures that hold great promise as nanoscale information carriers. Since their first observation at room temperature, progress has been made in their current-induced manipulation, with fast motion reported in stray -field-coupled multilayers. However, the complex spin textures with hybrid chiralities and large power dissipation in these multilayers limit their practical implementation and the fundamental understanding of their dynamics. Here, we report on the current-driven motion of Neel skyrmions with diameters in the 100-nm range in an ultrathin Pt/Co/MgO trilayer. We find that these skyrmions can be driven at a speed of 100 m/s and exhibit a drive-dependent skyrmion Hall effect, which is accounted for by the effect of pinning. Our experiments are well substantiated by an analytical model of the skyrmion dynamics as well as by micromagnetic simulations including material inhomogeneities. This good agreement is enabled by the simple skyrmion spin structure in our system and a thorough characterization of its static and dynamical properties.
Relativistic current induced torques and devices utilizing antiferromagnets have been independently considered as two promising new directions in spintronics research. Here we report electrical measurements of the torques in structures comprising a $ sim1$~nm thick layer of an antiferromagnet IrMn. The reduced Neel temperature and the thickness comparable to the spin-diffusion length allow us to investigate the role of the antiferromagnetic order in the ultra-thin IrMn films in the observed torques. In a Ta/IrMn/CoFeB structure, IrMn in the high-temperature phase diminishes the torque in the CoFeB ferromagnet. At low temperatures, the antidamping torque in CoFeB flips sign as compared to the reference Ta/CoFeB structure, suggesting that IrMn in the antiferromagnetic phase governs the net torque acting on the ferromagnet. At low temperatures, current induced torque signatures are observed also in a Ta/IrMn structure comprising no ferromagnetic layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا