ﻻ يوجد ملخص باللغة العربية
We develop a self-consistent theory for current-induced spin wave excitations in normal metal-magnetic insulator bilayer systems, thereby establishing the relation between spin wave excitation and the experimentally controlled parameters. We fully take into account the complex spin wave spectrum including dipolar interactions and surface anisotropy as well as the spin-pumping at the interface. Our results focus on the mode-dependent power close to the critical currents for spin wave excitation. The major findings are (a) the spin transfer torque can excite different spin-wave modes simultaneously; (b) spin pumping counterbalances spin-transfer torque and affects the surface modes more than the bulk modes; (c) spin pumping inhibits high frequency spin-wave modes, thereby redshifting the excitation spectrum. We can get agreement with experiments on yttrium iron garnet|platinum bilayers by postulating the existence of surface anisotropy modes.
We experimentally demonstrate the manipulation of magnetization relaxation utilizing a temperature difference across the thickness of an yttrium iron garnet/platinum (YIG/Pt) hetero-structure: the damping is either increased or decreased depending on
Quantitative investigation on the current-induced torque in antiferromagnets represents a great challenge, due to the lack of an independent method for controlling Neel vectors. Here by utilizing an antiferromagnetic insulator with Dzyaloshinskii-Mor
Spin Hall magnetoresistance (SMR) and magnon excitation magnetoresistance (MMR) that all generate via the spin Hall effect and inverse spin Hall effect in a nonmagnetic material are always related to each other. However, the influence of magnon excit
By exploiting proximity coupling, we probe the spin state of the surface layers of CrI3, a van der Waals magnetic semiconductor, by measuring the induced magnetoresistance (MR) of Pt in Pt/CrI3 nano-devices. We fabricate the devices with clean and st
The spin Hall magnetoresistance (SMR) effect arises from spin-transfer processes across the interface between a spin Hall active metal and an insulating magnet. While the SMR response of ferrimagnetic and antiferromagnetic insulators has been studied