ﻻ يوجد ملخص باللغة العربية
We have investigated the atomic structure of superconducting Ca-intercalated bilayer graphene on a SiC(0001) substrate using total-reflection high-energy positron diffraction. By comparing the experimental rocking-curves with ones calculated for various structural models using a full-dynamical theory, we have found that Ca atoms are intercalated in the graphene-buffer interlayer, rather than between the two graphene layers. From transport measurements, the superconducting transition was observed to be at Tc_onset = 4K for this structure. This study is the first to clearly identify the relation between the atomic arrangement and superconductivity in Ca-intercalated bilayer graphene.
Recent observation of proximity effect cite{Morpurgo:2007} has ignited interest in superconductivity in graphene and its derivatives. We consider Ca-intercalated graphene bilayer and argue that it is a superconductor, and likely with a sizeable $T_{c
The epitaxial growth of complex oxide thin films provide three avenues to generate unique properties: the ability to influence the 3-dimensional structure of the film, the presence of a surface, and the generation of an interface. In all three cases,
We performed high-pressure angle dispersive x-ray diffraction measurements on Fe5Si3 and Ni2Si up to 75 GPa. Both materials were synthesized in bulk quantities via a solid-state reaction. In the pressure range covered by the experiments, no evidence
The total energy differences between various SiC polytypes (3C, 6H, 4H, 2H, 15R and 9R) were calculated using the full-potential linear muffin-tin orbital method using the Perdew-Wang-(91) generalized gradient approximation to the exchange-correlatio
We use angle-resolved photoemission spectroscopy to investigate the electronic structure of bilayer graphene at high n-doping and extreme displacement fields, created by intercalating epitaxial monolayer graphene on silicon carbide with magnesium to