ﻻ يوجد ملخص باللغة العربية
We use angle-resolved photoemission spectroscopy to investigate the electronic structure of bilayer graphene at high n-doping and extreme displacement fields, created by intercalating epitaxial monolayer graphene on silicon carbide with magnesium to form quasi-freestanding bilayer graphene on magnesium-terminated silicon carbide. Angle-resolved photoemission spectroscopy reveals that upon magnesium intercalation, the single massless Dirac band of epitaxial monolayer graphene is transformed into the characteristic massive double-band Dirac spectrum of quasi-freestanding bilayer graphene. Analysis of the spectrum using a simple tight binding model indicates that magnesium intercalation results in an n-type doping of 2.1 $times$ 10$^{14}$ cm$^{-2}$, creates an extremely high displacement field of 2.6 V/nm, opening a considerable gap of 0.36 eV at the Dirac point. This is further confirmed by density-functional theory calculations for quasi-freestanding bilayer graphene on magnesium-terminated silicon carbide, which show a similar doping level, displacement field and bandgap. Finally, magnesium-intercalated samples are surprisingly robust to ambient conditions; no significant changes in the electronic structure are observed after 30 minutes exposure in air.
We study electron transport in nanostructures patterned in bilayer graphene patches grown epitaxially on SiC as a function of doping, magnetic field, and temperature. Away from charge neutrality transport is only weakly modulated by changes in carrie
Monolayer structures made up of purely one kind of atoms are fascinating. Many kinds of honeycomb systems including carbon, silicon, germanium, tin, phosphorus and arsenic have been shown to be stable. However, so far the structures are restricted to
Ultrafast carrier dynamics of pristine bilayer graphene (BLG) and bilayer graphene intercalated with FeCl3 (FeCl3-G), were studied using time-resolved transient differential reflection (delta R/R). Compared to BLG, the FeCl3-G data showed an opposite
Model description of patterns of atomic displacements in twisted bilayer systems has been proposed. The model is based on the consideration of several dislocation ensembles, employing a language that is widely used for grain boundaries and film/subst
Recent observation of proximity effect cite{Morpurgo:2007} has ignited interest in superconductivity in graphene and its derivatives. We consider Ca-intercalated graphene bilayer and argue that it is a superconductor, and likely with a sizeable $T_{c