ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of quantum mechanical Zeeman effect in classical transport due to topological properties of two-dimensional spin-3/2 holes

58   0   0.0 ( 0 )
 نشر من قبل Elizabeth Marcellina
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Zeeman interaction is a quantum mechanical effect that underpins spin-based quantum devices such as spin qubits. Typically, identification of the Zeeman interaction needs a large out-of-plane magnetic field coupled with ultralow temperatures, which limits the practicality of spin-based devices. However, in two-dimensional (2D) semiconductor holes, the strong spin-orbit interaction causes the Zeeman interaction to couple the spin, the magnetic field, and the momentum, and has terms with different winding numbers. In this work, we demonstrate a physical mechanism by which the Zeeman terms can be detected in classical transport. The effect we predict is very strong, and tunable by means of both the density and the in-plane magnetic field. It is a direct signature of the topological properties of the 2D hole system, and a manifestation in classical transport of an effect stemming from relativistic quantum mechanics. We discuss experimental observation and implications for quantum technologies.

قيم البحث

اقرأ أيضاً

Spin-orbit interactions in two-dimensional electron liquids are responsible for many interesting transport phenomena in which particle currents are converted to spin polarizations and spin currents and viceversa. Prime examples are the spin Hall effe ct, the Edelstein effect, and their inverses. By similar mechanisms it is also possible to partially convert an optically induced electron-hole density wave to a spin density wave and viceversa. In this paper we present a unified theoretical treatment of these effects based on quantum kinetic equations that include not only the intrinsic spin-orbit coupling from the band structure of the host material, but also the spin-orbit coupling due to an external electric field and a random impurity potential. The drift-diffusion equations we derive in the diffusive regime are applicable to a broad variety of experimental situations, both homogeneous and non-homogeneous, and include on equal footing skew scattering and side-jump from electron-impurity collisions. As a demonstration of the strength and usefulness of the theory we apply it to the study of several effects of current experimental interest: the inverse Edelstein effect, the spin-current swapping effect, and the partial conversion of an electron-hole density wave to a spin density wave in a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit couplings, subject to an electric field.
79 - E.G. Novik , B. Trauzettel , 2019
We investigate transport through a normal-superconductor (NS) junction made from a quantum spin Hall (QSH) system with helical edge states and a two-dimensional (2D) chiral topological superconductor (TSC) having a chiral Majorana edge mode. We emplo y a two-dimensional extended four-band model for HgTe-based quantum wells in a magnetic (Zeeman) field and subject to s-wave superconductivity. We show using the Bogoliubov-de Gennes scattering formalism that this structure provides a striking transport signal of a 2D TSC. As a function of the sample width (or Fermi energy) the conductance resonances go through a sequence of $2e^2/h$ (non-trivial phase) and $4e^2/h$ plateaux (trivial phase) which fall within the region of a non-zero Chern number (2D limit) as the sample width becomes large. These signatures are a manifestation of the topological nature of the QSH effect and the TSC.
124 - Daniel Stanek , Carsten Raas , 2014
We discuss the semiclassical and classical character of the dynamics of a single spin 1/2 coupled to a bath of noninteracting spins 1/2. On the semiclassical level, we extend our previous approach presented in D. Stanek, C. Raas, and G. S. Uhrig, Phy s. Rev. B 88, 155305 (2013) by the explicit consideration of the conservation of the total spin. On the classical level, we compare the results of the classical equations of motions in absence and presence of an external field to the full quantum result obtained by density-matrix renormalization (DMRG). We show that for large bath sizes and not too low magnetic field the classical dynamics, averaged over Gaussian distributed initial spin vectors, agrees quantitatively with the quantum-mechanical one. This observation paves the way for an efficient approach for certain parameter regimes.
43 - B. Ostahie , M. Nita , A. Aldea 2014
We study the electronic properties of the confined honeycomb lattice in the presence of the intrinsic spin-orbit (ISO) interaction and perpendicular magnetic field, and report on uncommon aspects of the quantum spin Hall conductance corroborated by p eculiar properties of the edge states. The ISO interaction induces two specific gaps in the Hofstadter spectrum, namely the weak topological gap defined by Beugeling et al [Phys. Rev. B 86, 075118 (2012)], and spin-imbalanced gaps in the relativistic range of the energy spectrum. We analyze the evolution of the helical states with the magnetic field and with increasing Anderson disorder. The edge localization of the spin-dependent states and its dependence on the disorder strength is shown. The quantum transport, treated in the Landauer-B{u}ttiker formalism, reveals interesting new plateaus of the quantum spin Hall effect (QSHE), and also of the integer quantum Hall effect (IQHE), in the energy ranges corresponding to the spin-imbalanced gaps. The properties of the spin-dependent transmittance matrix that determine the symmetries with respect to the spin, energy and magnetic field of the longitudinal and transverse resistance are shown.
Topological states of matter have attracted a lot of attention due to their many intriguing transport properties. In particular, two-dimensional topological insulators (2D TI) possess gapless counter propagating conducting edge channels, with opposit e spin, that are topologically protected from backscattering. Two basic features are supposed to confirm the existence of the ballistic edge channels in the submicrometer limit: the 4-terminal conductance is expected to be quantized at the universal value $2e^{2}/h$, and a nonlocal signal should appear due to a net current along the sample edge, carried by the helical states. On the other hand for longer channels the conductance has been found to deviate from the quantized value. This article reviewer the experimental and theoretical work related to the transport in two-dimensional topological insulators (2D-TI), based on HgTe quantum wells in zero magnetic field. We provide an overview of the basic mechanisms predicting a deviation from the quantized transport due to backscattering (accompanied by spin-flips) between the helical channels. We discuss the details of the model, which takes into account the edge and bulk contribution to the total current and reproduces the experimental results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا