ﻻ يوجد ملخص باللغة العربية
Spin-orbit interactions in two-dimensional electron liquids are responsible for many interesting transport phenomena in which particle currents are converted to spin polarizations and spin currents and viceversa. Prime examples are the spin Hall effect, the Edelstein effect, and their inverses. By similar mechanisms it is also possible to partially convert an optically induced electron-hole density wave to a spin density wave and viceversa. In this paper we present a unified theoretical treatment of these effects based on quantum kinetic equations that include not only the intrinsic spin-orbit coupling from the band structure of the host material, but also the spin-orbit coupling due to an external electric field and a random impurity potential. The drift-diffusion equations we derive in the diffusive regime are applicable to a broad variety of experimental situations, both homogeneous and non-homogeneous, and include on equal footing skew scattering and side-jump from electron-impurity collisions. As a demonstration of the strength and usefulness of the theory we apply it to the study of several effects of current experimental interest: the inverse Edelstein effect, the spin-current swapping effect, and the partial conversion of an electron-hole density wave to a spin density wave in a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit couplings, subject to an electric field.
We use microscopic linear response theory to derive a set of equations that provide a complete description of coupled spin and charge diffusive transport in a two-dimensional electron gas (2DEG) with the Rashba spin-orbit (SO) interaction. These equa
The transport equations for a two-dimensional electron gas with spin-orbit interaction are presented. The distribution function is a 2x2-matrix in the spin space. Particle and energy conservation laws determine the expressions for the electric curren
Current-induced spin polarization (CISP) is rederived in ballistic spin-orbit-coupled electron systems, based on equilibrium statistical mechanics. A simple and useful picture is correspondingly proposed to help understand the CISP and predict the po
Using time-resolved Faraday rotation, the drift-induced spin-orbit Field of a two-dimensional electron gas in an InGaAs quantum well is measured. Including measurements of the electron mobility, the Dresselhaus and Rashba coefficients are determined
We present magnetotransport calculations for homogeneous two-dimensional electron systems including the Rashba spin-orbit interaction, which mixes the spin-eigenstates and leads to a modified fan-chart with crossing Landau levels. The quantum mechani