ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological properties of the mesoscopic graphene plaquette: QSHE due to spin imbalance

43   0   0.0 ( 0 )
 نشر من قبل Alexandru Aldea
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the electronic properties of the confined honeycomb lattice in the presence of the intrinsic spin-orbit (ISO) interaction and perpendicular magnetic field, and report on uncommon aspects of the quantum spin Hall conductance corroborated by peculiar properties of the edge states. The ISO interaction induces two specific gaps in the Hofstadter spectrum, namely the weak topological gap defined by Beugeling et al [Phys. Rev. B 86, 075118 (2012)], and spin-imbalanced gaps in the relativistic range of the energy spectrum. We analyze the evolution of the helical states with the magnetic field and with increasing Anderson disorder. The edge localization of the spin-dependent states and its dependence on the disorder strength is shown. The quantum transport, treated in the Landauer-B{u}ttiker formalism, reveals interesting new plateaus of the quantum spin Hall effect (QSHE), and also of the integer quantum Hall effect (IQHE), in the energy ranges corresponding to the spin-imbalanced gaps. The properties of the spin-dependent transmittance matrix that determine the symmetries with respect to the spin, energy and magnetic field of the longitudinal and transverse resistance are shown.

قيم البحث

اقرأ أيضاً

Transport properties of ferromagnetic/non-magnetic/ferromagnetic single electron transistors are investigated as a function of external magnetic field, temperature, bias and gate voltage. By designing the magnetic electrodes to have different switchi ng fields, a two-mode device is realized having two stable magnetization states, with the electrodes aligned in parallel and antiparallel. Magnetoresistance of approximately 100% is measured in Co/AlO$_{X}$/Al/AlO$_{X}$/Co double tunnel junction spin valves at low bias, with the Al spacer in the superconducting state. The effect is substantially reduced at high bias and temperatures above the $T_{C}$ of the Al. The experimental results are interpreted as due to spin imbalance of charge carriers resulting in suppression of the superconducting gap of the Al island.
This brief review discusses electronic properties of mesoscopic graphene-based structures. These allow controlling the confinement and transport of charge and spin; thus, they are of interest not only for fundamental research, but also for applicatio ns. The graphene-related topics covered here are: edges, nanoribbons, quantum dots, $pn$-junctions, $pnp$-structures, and quantum barriers and waveguides. This review is partly intended as a short introduction to graphene mesoscopics.
Andersons orthogonality catastrophe (AOC) theorem establishes that the ground state of the many-body fermion system is asymptotically orthogonal to the ground state of the same system perturbed by a scattering potential, so that the overlap between t he original and new ground states decays to zero with the system size. We adopt the AOC for a description of heat production in a complementary metal-oxide-semiconductor (CMOS) transistor. We find that the heat released in the transistor comprises two distinct components, contribution from the dissipation accompanying electron transmission under the applied voltage and purely quantum-mechanical AOC part due to the change in scattering matrix for electrons upon switching between high and low conductance regimes. We calculate the AOC-induced heat production, which we call switching heat.
66 - P. Ingenhoven 2009
We have calculated the optical conductivity of a disorder-free single graphene sheet in the presence of spin-orbit coupling, using the Kubo formalism. Both intrinsic and structural-inversion-asymmetry induced types of spin splitting are considered wi thin a low-energy continuum theory. Analytical results are obtained that allow us to identify distinct features arising from spin-orbit couplings. We point out how optical-conductivity measurements could offer a way to determine the strengths of spin splitting due to various origins in graphene.
The Zeeman interaction is a quantum mechanical effect that underpins spin-based quantum devices such as spin qubits. Typically, identification of the Zeeman interaction needs a large out-of-plane magnetic field coupled with ultralow temperatures, whi ch limits the practicality of spin-based devices. However, in two-dimensional (2D) semiconductor holes, the strong spin-orbit interaction causes the Zeeman interaction to couple the spin, the magnetic field, and the momentum, and has terms with different winding numbers. In this work, we demonstrate a physical mechanism by which the Zeeman terms can be detected in classical transport. The effect we predict is very strong, and tunable by means of both the density and the in-plane magnetic field. It is a direct signature of the topological properties of the 2D hole system, and a manifestation in classical transport of an effect stemming from relativistic quantum mechanics. We discuss experimental observation and implications for quantum technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا