ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of a large-scale vorticity in a fast rotating density stratified turbulence or turbulent convection

132   0   0.0 ( 0 )
 نشر من قبل Igor Rogachevskii
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find an instability resulting in generation of large-scale vorticity in a fast rotating small-scale turbulence or turbulent convection with inhomogeneous fluid density along the rotational axis in anelastic approximation. The large-scale instability causes excitation of two modes: (i) the mode with dominant vertical vorticity and with the mean velocity being independent of the vertical coordinate; (ii) the mode with dominant horizontal vorticity and with the mean momentum being independent of the vertical coordinate. The mode with the dominant vertical vorticity can be excited in a fast rotating density stratified hydrodynamic turbulence or turbulent convection. For this mode, the mean entropy is depleted inside the cyclonic vortices, while it is enhanced inside the anti-cyclonic vortices. The mode with the dominant horizontal vorticity can be excited only in a fast rotating density stratified turbulent convection. The developed theory may be relevant for explanation of an origin of large spots observed as immense storms in great planets, e.g., the Great Red Spot in Jupiter and large spots in Saturn. It may be also useful for explanation of an origin of high-latitude spots in rapidly rotating late-type stars.



قيم البحث

اقرأ أيضاً

We discuss a mean-field theory of generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale nonuniform flow is produced due to ether a combined action o f a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.
302 - S. V. Nazarenko 2009
It is proposed that critical balance - a scale-by-scale balance between the linear propagation and nonlinear interaction time scales - can be used as a universal scaling conjecture for determining the spectra of strong turbulence in anisotropic wave systems. Magnetohydrodynamic (MHD), rotating and stratified turbulence are considered under this assumption and, in particular, a novel and experimentally testable energy cascade scenario and a set of scalings of the spectra are proposed for low-Rossby-number rotating turbulence. It is argued that in neutral fluids, the critically balanced anisotropic cascade provides a natural path from strong anisotropy at large scales to isotropic Kolmogorov turbulence at very small scales. It is also argued that the kperp^{-2} spectra seen in recent numerical simulations of low-Rossby-number rotating turbulence may be analogous to the kperp^{-3/2} spectra of the numerical MHD turbulence in the sense that they could be explained by assuming that fluctuations are polarised (aligned) approximately as inertial waves (Alfven waves for MHD).
A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on a combined effect of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A couple d system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral tau approach which is valid for large Reynolds and Peclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.
132 - J. von Hardenberg 2015
We simulate three-dimensional, horizontally periodic Rayleigh-Benard convection between free-slip horizontal plates, rotating about a distant horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficien tly large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.
In turbulent Rayleigh-Benard convection, a large-scale circulation (LSC) develops in a nearly vertical plane, and is maintained by rising and falling plumes detaching from the unstable thermal boundary layers. Rare but large fluctuations in the LSC a mplitude can lead to extinction of the LSC (a cessation event), followed by the re-emergence of another LSC with a different (random) azimuthal orientation. We extend previous models of the LSC dynamics to include momentum and thermal diffusion in the azimuthal plane, and calculate the tails of the probability distributions of both the amplitude and azimuthal angle. Our analytical results are in very good agreement with experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا