ﻻ يوجد ملخص باللغة العربية
We simulate three-dimensional, horizontally periodic Rayleigh-Benard convection between free-slip horizontal plates, rotating about a distant horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.
We find an instability resulting in generation of large-scale vorticity in a fast rotating small-scale turbulence or turbulent convection with inhomogeneous fluid density along the rotational axis in anelastic approximation. The large-scale instabili
We consider the effect of stratification on systematic, large-scale flows generated in anelastic convection. We present results from three-dimensional numerical simulations of convection in a rotating plane layer in which the angle between the axis o
In a range of physical systems, the first instability in Rayleigh-Bernard convection between nearly thermally insulating horizontal plates is large scale. This holds for thermal convection of fluids saturating porous media. Large-scale thermal convec
The relative importance of the helicity and cross-helicity electromotive dynamo effects for self-sustained magnetic field generation by chaotic thermal convection in rotating spherical shells is investigated as a function of shell thickness. Two dist
In turbulent Rayleigh-Benard convection, a large-scale circulation (LSC) develops in a nearly vertical plane, and is maintained by rising and falling plumes detaching from the unstable thermal boundary layers. Rare but large fluctuations in the LSC a