ﻻ يوجد ملخص باللغة العربية
In turbulent Rayleigh-Benard convection, a large-scale circulation (LSC) develops in a nearly vertical plane, and is maintained by rising and falling plumes detaching from the unstable thermal boundary layers. Rare but large fluctuations in the LSC amplitude can lead to extinction of the LSC (a cessation event), followed by the re-emergence of another LSC with a different (random) azimuthal orientation. We extend previous models of the LSC dynamics to include momentum and thermal diffusion in the azimuthal plane, and calculate the tails of the probability distributions of both the amplitude and azimuthal angle. Our analytical results are in very good agreement with experimental data.
We studied the properties of the large-scale circulation (LSC) in turbulent Rayleigh-Benard (RB) convection by using results from direct numerical simulations in which we placed a large number of numerical probes close to the sidewall. The LSC orient
Recent studies of rotating Rayleigh-Benard convection at high rotation rates and strong thermal forcing have shown a significant discrepancy in total heat transport between experiments on a confined cylindrical domain on the one hand and simulations
We present a numerical study of the flow states and reversals of the large-scale circulation (LSC) in a two-dimensional circular Rayleigh-Benard cell. Long-time direct numerical simulations are carried out in the Rayleigh number ($Ra$) range $10^{7}
We report an experimental study of the large-scale circulation (LSC) in a turbulent Rayleigh-B{e}nard convection cell with aspect ratio unity. The temperature-extremum-extraction (TEE) method for obtaining the dynamic information of the LSC is presen
We find an instability resulting in generation of large-scale vorticity in a fast rotating small-scale turbulence or turbulent convection with inhomogeneous fluid density along the rotational axis in anelastic approximation. The large-scale instabili