ترغب بنشر مسار تعليمي؟ اضغط هنا

Gender gaps in urban mobility

113   0   0.0 ( 0 )
 نشر من قبل Michele Tizzoni
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of public transportation or simply moving about in streets are gendered issues. Women and girls often engage in multi-purpose, multi-stop trips in order to do household chores, work, and study (trip chaining). Women-headed households are often more prominent in urban settings and they tend to work more in low-paid/informal jobs than men, with limited access to transportation subsidies. Here we present recent results on urban mobility from a gendered perspective by uniquely combining a wide range of datasets, including commercial sources of telecom and open data. We explored urban mobility of women and men in the greater metropolitan area of Santiago, Chile, by analyzing the mobility traces extracted from the Call Detail Records (CDRs) of a large cohort of anonymized mobile phone users over a period of 3 months. We find that, taking into account the differences in users calling behaviors, women move less than men, visiting less unique locations and distributing their time less equally among such locations. By mapping gender differences in mobility over the 52 comunas of Santiago, we find a higher mobility gap to be correlated with socio-economic indicators, such as a lower average income, and with the lack of public and private transportation options. Such results provide new insights for policymakers to design more gender inclusive transportation plans in the city of Santiago.



قيم البحث

اقرأ أيضاً

Many of our routines and activities are linked to our ability to move; be it commuting to work, shopping for groceries, or meeting friends. Yet, factors that limit the individuals ability to fully realise their mobility needs will ultimately affect t he opportunities they can have access to (e.g. cultural activities, professional interactions). One important aspect frequently overlooked in human mobility studies is how gender-centred issues can amplify other sources of mobility disadvantages (e.g. socioeconomic inequalities), unevenly affecting the pool of opportunities men and women have access to. In this work, we leverage on a combination of computational, statistical, and information-theoretical approaches to investigate the existence of systematic discrepancies in the mobility diversity (i.e. the diversity of travel destinations) of (1) men and women from different socioeconomic backgrounds, and (2) work and non-work travels. Our analysis is based on datasets containing multiple instances of large-scale, official, travel surveys carried out in three major metropolitan areas in South America: Medellin and Bogota in Colombia, and S~ao Paulo in Brazil. Our results indicate the presence of general discrepancies in the urban mobility diversities related to the gender and socioeconomic characteristics of the individuals. Lastly, this paper sheds new light on the possible origins of gender-level human mobility inequalities, contributing to the general understanding of disaggregated patterns in human mobility.
Using smartphone location data from Colombia, Mexico, and Indonesia, we investigate how non-pharmaceutical policy interventions intended to mitigate the spread of the COVID-19 pandemic impact human mobility. In all three countries, we find that follo wing the implementation of mobility restriction measures, human movement decreased substantially. Importantly, we also uncover large and persistent differences in mobility reduction between wealth groups: on average, users in the top decile of wealth reduced their mobility up to twice as much as users in the bottom decile. For decision-makers seeking to efficiently allocate resources to response efforts, these findings highlight that smartphone location data can be leveraged to tailor policies to the needs of specific socioeconomic groups, especially the most vulnerable.
Assessing the resilience of a road network is instrumental to improve existing infrastructures and design new ones. Here we apply the optimal path crack model (OPC) to investigate the mobility of road networks and propose a new proxy for resilience o f urban mobility. In contrast to static approaches, the OPC accounts for the dynamics of rerouting as a response to traffic jams. Precisely, one simulates a sequence of failures (cracks) at the most vulnerable segments of the optimal origin-destination paths that are capable to collapse the system. Our results with synthetic and real road networks reveal that their levels of disorder, fractions of unidirectional segments and spatial correlations can drastically affect the vulnerability to traffic congestion. By applying the OPC to downtown Boston and Manhattan, we found that Boston is significantly more vulnerable than Manhattan. This is compatible with the fact that Boston heads the list of American metropolitan areas with the highest average time waste in traffic. Moreover, our analysis discloses that the origin of this difference comes from the intrinsic spatial correlations of each road network. Finally, we argue that, due to their global influence, the most important cracks identified with OPC can be used to pinpoint potential small rerouting and structural changes in road networks that are capable to substantially improve urban mobility.
The identification of urban mobility patterns is very important for predicting and controlling spatial events. In this study, we analyzed millions of geographical check-ins crawled from a leading Chinese location-based social networking service (Jiep ang.com), which contains demographic information that facilitates group-specific studies. We determined the distinct mobility patterns of natives and non-natives in all five large cities that we considered. We used a mixed method to assign different algorithms to natives and non-natives, which greatly improved the accuracy of location prediction compared with the basic algorithms. We also propose so-called indigenization coefficients to quantify the extent to which an individual behaves like a native, which depends only on their check-in behavior, rather than requiring demographic information. Surprisingly, the hybrid algorithm weighted using the indigenization coefficients outperformed a mixed algorithm that used additional demographic information, suggesting the advantage of behavioral data in characterizing individual mobility compared with the demographic information. The present location prediction algorithms can find applications in urban planning, traffic forecasting, mobile recommendation, and so on.
Cycling is a promising solution to unsustainable car-centric urban transport systems. However, prevailing bicycle network development follows a slow and piecewise process, without taking into account the structural complexity of transportation networ ks. Here we explore systematically the topological limitations of urban bicycle network development. For 62 cities we study different variations of growing a synthetic bicycle network between an arbitrary set of points routed on the urban street network. We find initially decreasing returns on investment until a critical threshold, posing fundamental consequences to sustainable urban planning: Cities must invest into bicycle networks with the right growth strategy, and persistently, to surpass a critical mass. We also find pronounced overlaps of synthetically grown networks in cities with well-developed existing bicycle networks, showing that our model reflects reality. Growing networks from scratch makes our approach a generally applicable starting point for sustainable urban bicycle network planning with minimal data requirements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا