ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncovering socioeconomic gaps in mobility reduction during the COVID-19 pandemic using location data

123   0   0.0 ( 0 )
 نشر من قبل Lorenzo Lucchini
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Using smartphone location data from Colombia, Mexico, and Indonesia, we investigate how non-pharmaceutical policy interventions intended to mitigate the spread of the COVID-19 pandemic impact human mobility. In all three countries, we find that following the implementation of mobility restriction measures, human movement decreased substantially. Importantly, we also uncover large and persistent differences in mobility reduction between wealth groups: on average, users in the top decile of wealth reduced their mobility up to twice as much as users in the bottom decile. For decision-makers seeking to efficiently allocate resources to response efforts, these findings highlight that smartphone location data can be leveraged to tailor policies to the needs of specific socioeconomic groups, especially the most vulnerable.



قيم البحث

اقرأ أيضاً

In March of this year, COVID-19 was declared a pandemic and it continues to threaten public health. This global health crisis imposes limitations on daily movements, which have deteriorated every sector in our society. Understanding public reactions to the virus and the non-pharmaceutical interventions should be of great help to fight COVID-19 in a strategic way. We aim to provide tangible evidence of the human mobility trends by comparing the day-by-day variations across the U.S. Large-scale public mobility at an aggregated level is observed by leveraging mobile device location data and the measures related to social distancing. Our study captures spatial and temporal heterogeneity as well as the sociodemographic variations regarding the pandemic propagation and the non-pharmaceutical interventions. All mobility metrics adapted capture decreased public movements after the national emergency declaration. The population staying home has increased in all states and becomes more stable after the stay-at-home order with a smaller range of fluctuation. There exists overall mobility heterogeneity between the income or population density groups. The public had been taking active responses, voluntarily staying home more, to the in-state confirmed cases while the stay-at-home orders stabilize the variations. The study suggests that the public mobility trends conform with the government message urging to stay home. We anticipate our data-driven analysis offers integrated perspectives and serves as evidence to raise public awareness and, consequently, reinforce the importance of social distancing while assisting policymakers.
The impact of the ongoing COVID-19 pandemic is being felt in all spheres of our lives -- cutting across the boundaries of nation, wealth, religions or race. From the time of the first detection of infection among the public, the virus spread though a lmost all the countries in the world in a short period of time. With humans as the carrier of the virus, the spreading process necessarily depends on the their mobility after being infected. Not only in the primary spreading process, but also in the subsequent spreading of the mutant variants, human mobility plays a central role in the dynamics. Therefore, on one hand travel restrictions of varying degree were imposed and are still being imposed, by various countries both nationally and internationally. On the other hand, these restrictions have severe fall outs in businesses and livelihood in general. Therefore, it is an optimization process, exercised on a global scale, with multiple changing variables. Here we review the techniques and their effects on optimization or proposed optimizations of human mobility in different scales, carried out by data driven, machine learning and model approaches.
Given the rapid recent trend of urbanization, a better understanding of how urban infrastructure mediates socioeconomic interactions and economic systems is of vital importance. While the accessibility of location-enabled devices as well as large-sca le datasets of human activities, has fueled significant advances in our understanding, there is little agreement on the linkage between socioeconomic status and its influence on movement patterns, in particular, the role of inequality. Here, we analyze a heavily aggregated and anonymized summary of global mobility and investigate the relationships between socioeconomic status and mobility across a hundred cities in the US and Brazil. We uncover two types of relationships, finding either a clear connection or little-to-no interdependencies. The former tend to be characterized by low levels of public transportation usage, inequitable access to basic amenities and services, and segregated clusters of communities in terms of income, with the latter class showing the opposite trends. Our findings provide useful lessons in designing urban habitats that serve the larger interests of all inhabitants irrespective of their economic status.
The COVID-19 pandemic has affected peoples lives around the world on an unprecedented scale. We intend to investigate hoarding behaviors in response to the pandemic using large-scale social media data. First, we collect hoarding-related tweets shortl y after the outbreak of the coronavirus. Next, we analyze the hoarding and anti-hoarding patterns of over 42,000 unique Twitter users in the United States from March 1 to April 30, 2020, and dissect the hoarding-related tweets by age, gender, and geographic location. We find the percentage of females in both hoarding and anti-hoarding groups is higher than that of the general Twitter user population. Furthermore, using topic modeling, we investigate the opinions expressed towards the hoarding behavior by categorizing these topics according to demographic and geographic groups. We also calculate the anxiety scores for the hoarding and anti-hoarding related tweets using a lexical approach. By comparing their anxiety scores with the baseline Twitter anxiety score, we reveal further insights. The LIWC anxiety mean for the hoarding-related tweets is significantly higher than the baseline Twitter anxiety mean. Interestingly, beer has the highest calculated anxiety score compared to other hoarded items mentioned in the tweets.
New York has become one of the worst-affected COVID-19 hotspots and a pandemic epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and the effectiveness of government policies on human mobility by analyzing multiple datasets available at both macro and micro levels for the New York City. Using data sources related to population density, aggregated population mobility, public rail transit use, vehicle use, hotspot and non-hotspot movement patterns, and human activity agglomeration, we analyzed the inter-borough and intra-borough moment for New York City by aggregating the data at the borough level. We also assessed the internodal population movement amongst hotspot and non-hotspot points of interest for the month of March and April 2020. Results indicate a drop of about 80% in peoples mobility in the city, beginning in mid-March. The movement to and from Manhattan showed the most disruption for both public transit and road traffic. The city saw its first case on March 1, 2020, but disruptions in mobility can be seen only after the second week of March when the shelter in place orders was put in effect. Owing to people working from home and adhering to stay-at-home orders, Manhattan saw the largest disruption to both inter- and intra-borough movement. But the risk of spread of infection in Manhattan turned out to be high because of higher hotspot-linked movements. The stay-at-home restrictions also led to an increased population density in Brooklyn and Queens as people were not commuting to Manhattan. Insights obtained from this study would help policymakers better understand human behavior and their response to the news and governmental policies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا