ﻻ يوجد ملخص باللغة العربية
Assessing the resilience of a road network is instrumental to improve existing infrastructures and design new ones. Here we apply the optimal path crack model (OPC) to investigate the mobility of road networks and propose a new proxy for resilience of urban mobility. In contrast to static approaches, the OPC accounts for the dynamics of rerouting as a response to traffic jams. Precisely, one simulates a sequence of failures (cracks) at the most vulnerable segments of the optimal origin-destination paths that are capable to collapse the system. Our results with synthetic and real road networks reveal that their levels of disorder, fractions of unidirectional segments and spatial correlations can drastically affect the vulnerability to traffic congestion. By applying the OPC to downtown Boston and Manhattan, we found that Boston is significantly more vulnerable than Manhattan. This is compatible with the fact that Boston heads the list of American metropolitan areas with the highest average time waste in traffic. Moreover, our analysis discloses that the origin of this difference comes from the intrinsic spatial correlations of each road network. Finally, we argue that, due to their global influence, the most important cracks identified with OPC can be used to pinpoint potential small rerouting and structural changes in road networks that are capable to substantially improve urban mobility.
The identification of urban mobility patterns is very important for predicting and controlling spatial events. In this study, we analyzed millions of geographical check-ins crawled from a leading Chinese location-based social networking service (Jiep
Non-Hermitian effects could trigger spectrum, localization and topological phase transitions in quasiperiodic lattices. We propose a non-Hermitian extension of the Maryland model, which forms a paradigm in the study of localization and quantum chaos
The use of public transportation or simply moving about in streets are gendered issues. Women and girls often engage in multi-purpose, multi-stop trips in order to do household chores, work, and study (trip chaining). Women-headed households are ofte
Network motifs are small building blocks of complex networks. Statistically significant motifs often perform network-specific functions. However, the precise nature of the connection between motifs and the global structure and function of networks re
Here we provide a detailed analysis, along with some extensions and additonal investigations, of a recently proposed self-organised model for the evolution of complex networks. Vertices of the network are characterised by a fitness variable evolving