ﻻ يوجد ملخص باللغة العربية
We present an approach over arbitrary fields to bound the degree of intersection of families of varieties in terms of how these concentrate on algebraic sets of smaller codimension. This provides in particular a substantial extension of the method of degree-reduction that enables it to deal efficiently with higher-dimensional problems and also with high-degree varieties. We obtain sharp bounds that are new even in the case of lines in $mathbb{R}^n$ and show that besides doubly-ruled varieties, only a certain rare family of varieties can be relevant for the study of incidence questions.
We give some explicit bounds for the number of cobordism classes of real algebraic manifolds of real degree less than $d$, and for the size of the sum of $mod 2$ Betti numbers for the real form of complex manifolds of complex degree less than $d$.
In our previous work, we provided an algebraic proof of the Zingers comparison formula between genus one Gromov-Witten invariants and reduced invariants when the target space is a complete intersection of dimension two or three in a projective space.
We prove that any pair of bivariate trinomials has at most 5 isolated roots in the positive quadrant. The best previous upper bounds independent of the polynomial degrees were much larger, e.g., 248832 (for just the non-degenerate roots) via a famous
Because of its ineffectiveness, the usual arithmetic Hilbert-Samuel formula is not applicable in the context of Diophantine Approximation. In order to overcome this difficulty, the present paper presents explicit estimates for arithmetic Hilbert Functions of closed subvarieties in projective space.
Let X and Y be K-equivalent toric Deligne-Mumford stacks related by a single toric wall-crossing. We prove the Crepant Transformation Conjecture in this case, fully-equivariantly and in genus zero. That is, we show that the equivariant quantum connec