ترغب بنشر مسار تعليمي؟ اضغط هنا

The Crepant Transformation Conjecture for Toric Complete Intersections

176   0   0.0 ( 0 )
 نشر من قبل Tom Coates
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let X and Y be K-equivalent toric Deligne-Mumford stacks related by a single toric wall-crossing. We prove the Crepant Transformation Conjecture in this case, fully-equivariantly and in genus zero. That is, we show that the equivariant quantum connections for X and Y become gauge-equivalent after analytic continuation in quantum parameters. Furthermore we identify the gauge transformation involved, which can be thought of as a linear symplectomorphism between the Givental spaces for X and Y, with a Fourier-Mukai transformation between the K-groups of X and Y, via an equivariant version of the Gamma-integral structure on quantum cohomology. We prove similar results for toric complete intersections. We impose only very weak geometric hypotheses on X and Y: they can be non-compact, for example, and need not be weak Fano or have Gorenstein coarse moduli space. Our main tools are the Mirror Theorems for toric Deligne-Mumford stacks and toric complete intersections, and the Mellin-Barnes method for analytic continuation of hypergeometric functions.



قيم البحث

اقرأ أيضاً

We find at least 527 new four-dimensional Fano manifolds, each of which is a complete intersection in a smooth toric Fano manifold.
We prove the cohomological crepant resolution conjecture of Ruan for the weighted projective space P(1,3,4,4). To compute the quantum corrected cohomology ring we combine the results of Coates-Corti-Iritani-Tseng on P(1,1,1,3) and our previous results.
It is known that the underlying spaces of all abelian quotient singularities which are embeddable as complete intersections of hypersurfaces in an affine space can be overall resolved by means of projective torus-equivariant crepant birational morphi sms in all dimensions. In the present paper we extend this result to the entire class of toric l.c.i.-singularities. Our proof makes use of Nakajimas classification theorem and of some special techniques from toric and discrete geometry.
We compute the motivic Donaldson-Thomas theory of small crepant resolutions of toric Calabi-Yau 3-folds.
We show that very general hypersurfaces in odd-dimensional simplicial projective toric varieties verifying a certain combinatorial property satisfy the Hodge conjecture (these include projective spaces). This gives a connection between the Oda conjec ture and Hodge conjecture. We also give an explicit criterion which depends on the degree for very general hypersurfaces for the combinatorial condition to be verified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا