ﻻ يوجد ملخص باللغة العربية
Because of its ineffectiveness, the usual arithmetic Hilbert-Samuel formula is not applicable in the context of Diophantine Approximation. In order to overcome this difficulty, the present paper presents explicit estimates for arithmetic Hilbert Functions of closed subvarieties in projective space.
Let $mathcal{X}$ be a regular projective arithmetic variety equipped with an ample hermitian line bundle $overline{mathcal{L}}$. We prove that the proportion of global sections $sigma$ with $leftlVert sigma rightrVert_{infty}<1$ of $overline{mathcal{
On any smooth algebraic variety over a $p$-adic local field, we construct a tensor functor from the category of de Rham $p$-adic etale local systems to the category of filtered algebraic vector bundles with integrable connections satisfying the Griff
We survey some recent work on the geometric Satake of p-adic groups and its applications to some arithmetic problems of Shimura varieties. We reformulate a few constructions appeared in the previous works more conceptually.
We give some explicit bounds for the number of cobordism classes of real algebraic manifolds of real degree less than $d$, and for the size of the sum of $mod 2$ Betti numbers for the real form of complex manifolds of complex degree less than $d$.
Consider a finite polysquare or square tiled region, a connected, but not necessarily simply-connected, polygonal region tiled with aligned unit squares. Using ideas from diophantine approximation, we prove that a half-infinite billiard orbit in such