ﻻ يوجد ملخص باللغة العربية
Complex systems often have features that can be modeled by advanced mathematical tools [1]. Of special interests are the features of complex systems that have a network structure as such systems are important for modeling technological and social processes [3, 4]. In our previous research we have discussed the flow of a single substance in a channel of network. It may happen however that two substances flow in the same channel of network. In addition the substances may react and then the question arises about the distribution of the amounts of the substances in the segments of the channel. A study of the dynamics of the flow of the substances as well as a study of the distribution of the substances is presented in this paper on the base of a discrete - time model of flow of substances in the nodes of a channel of a network.
We investigate the flow of a nano-scale incompressible ridge of low-volatility liquid along a chemical channel: a long, straight, and completely wetting stripe embedded in a planar substrate, and sandwiched between two extended less wetting solid reg
The two-fluid (ions and electrons) plasma Richtmyer-Meshkov instability of a cylindrical light/heavy density interface is numerically investigated without an initial magnetic field. Varying the Debye length scale, we examine the effects of the coupli
The previous study regarding the stabilization of a magnetized constant temperature plasma by shear flow with vorticity is extended to a plasma of non-constant temperature, where in the presence of heat source or sinks the thermomagnetic Nernst effec
We propose an explanation for the onset of oscillations seen in numerical simulations of dense, inclined flows of inelastic, frictional spheres. It is based on a phase transition between disordered and ordered collisional states that may be interrupt
The role of turbulence in current generation and self-excitation of magnetic fields has been studied in the geometry of a mechanically driven, spherical dynamo experiment, using a three dimensional numerical computation. A simple impeller model drive