ترغب بنشر مسار تعليمي؟ اضغط هنا

Pearling instability of nanoscale fluid flow confined to a chemical channel

249   0   0.0 ( 0 )
 نشر من قبل Markus Rauscher
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the flow of a nano-scale incompressible ridge of low-volatility liquid along a chemical channel: a long, straight, and completely wetting stripe embedded in a planar substrate, and sandwiched between two extended less wetting solid regions. Molecular dynamics simulations, a simple long-wavelength approximation, and a full stability analysis based on the Stokes equations are used, and give qualitatively consistent results. While thin liquid ridges are stable both statically and during flow, a (linear) pearling instability develops if the thickness of the ridge exceeds half of the width of the channel. In the flowing case periodic bulges propagate along the channel and subsequently merge due to nonlinear effects. However, the ridge does not break up even when the flow is unstable, and the qualitative behavior is unchanged even when the fluid can spill over onto a partially wetting exterior solid region.

قيم البحث

اقرأ أيضاً

Surface effects become important in microfluidic setups because the surface to volume ratio becomes large. In such setups the surface roughness is not any longer small compared to the length scale of the system and the wetting properties of the wall have an important influence on the flow. However, the knowledge about the interplay of surface roughness and hydrophobic fluid-surface interaction is still very limited because these properties cannot be decoupled easily in experiments. We investigate the problem by means of lattice Boltzmann (LB) simulations of rough microchannels with a tunable fluid-wall interaction. We introduce an ``effective no-slip plane at an intermediate position between peaks and valleys of the surface and observe how the position of the wall may change due to surface roughness and hydrophobic interactions. We find that the position of the effective wall, in the case of a Gaussian distributed roughness depends linearly on the width of the distribution. Further we are able to show that roughness creates a non-linear effect on the slip length for hydrophobic boundaries.
66 - Y. Li , R. Samtaney , D. Bond 2020
The two-fluid (ions and electrons) plasma Richtmyer-Meshkov instability of a cylindrical light/heavy density interface is numerically investigated without an initial magnetic field. Varying the Debye length scale, we examine the effects of the coupli ng between the electron and ion fluids. When the coupling becomes strong, the electrons are restricted to co-move with the ions and the resulting evolution is similar to the hydrodynamic neutral fluid case. The charge separation that occurs between the electrons and ions results in self-generated electromagnetic fields. We show that the Biermann battery effect dominates the generation of magnetic field when the coupling between the electrons and ions is weak. In addition to the Rayleigh-Tayler stabilization effect during flow deceleration, the interfaces are accelerated by the induced spatio-temporally varying Lorentz force. As a consequence, the perturbations develop into the Rayleigh-Taylor instability, leading to an enhancement of the perturbation amplitude compared with the hydrodynamic case.
We investigate the radial thermocapillary flow driven by a laser-heated microbead in partial wetting at the water-air interface. Particular attention is paid to the evolution of the convective flow patterns surrounding the hot sphere as the latter is increasingly heated. The flow morphology is nearly axisymmetric at low laser power P. Increasing P leads to symmetry breaking with the onset of counter-rotating vortex pairs. The boundary condition at the interface, close to no-slip in the low-P regime, turns about stress-free between the vortex pairs in the high-P regime. These observations strongly support the view that surface-active impurities are inevitably adsorbed on the water surface where they form an elastic layer. The onset of vortex pairs is the signature of a hydrodynamic instability in the layer response to the centrifugal forced flow. Interestingly, our study paves the way for the design of active colloids able to achieve high-speed self-propulsion via vortex pair generation at a liquid interface.
We study the features of a radial Stokes flow due to a submerged jet directed toward a liquid-air interface. The presence of surface-active impurities confers to the interface an in-plane elasticity that resists the incident flow. Both analytical and numerical calculations show that a minute amount of surfactants is enough to profoundly alter the morphology of the flow. The hydrodynamic response of the interface is affected as well, shifting from slip to no-slip boundary condition as the surface compressibility decreases. We argue that the competition between the divergent outward flow and the elastic response of the interface may actually be used as a practical way to detect and quantify a small amount of impurities.
The active motion of phoretic colloids leads them to accumulate at boundaries and interfaces. Such an excess accumulation, with respect to their passive counterparts, makes the dynamics of phoretic colloids particularly sensitive to the presence of b oundaries and pave new routes to externally control their single particle as well as collective behavior. Here we review some recent theoretical results about the dynamics of phoretic colloids close to and adsorbed at fluid interfaces in particular highlighting similarities and differences with respect to solid-fluid interfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا