ترغب بنشر مسار تعليمي؟ اضغط هنا

Shear Flow Stabilization of a z-Pinch Plasma in the Presence of a Radial Temperature Gradient

120   0   0.0 ( 0 )
 نشر من قبل Friedwardt Winterberg
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F.Winterberg




اسأل ChatGPT حول البحث

The previous study regarding the stabilization of a magnetized constant temperature plasma by shear flow with vorticity is extended to a plasma of non-constant temperature, where in the presence of heat source or sinks the thermomagnetic Nernst effect becomes important. Of special interest is what this effect has on the stabilization of a linear z-pinch discharge for which exact solutions are given. Solutions which are unstable for subsonic shear flow become stable if the flow is supersonic.



قيم البحث

اقرأ أيضاً

153 - F. Winterberg 2009
Different ways to achieve the stabilization of a linear z-pinch by a superimposed shear flow are analyzed. They are: 1) Axial shear flow proposed by Arber and Howell with the pinch discharge in its center, and experimentally tested by Shumlak et al. 2) Spiral flow of a dense low temperature plasma surrounding a dense pinch discharge. 3) A thin metallic projectile shot at a high velocity through the center of the pinch discharge. 4) The replacement of the high velocity projectile by the shape charge effect jet in a conical implosion. 5) The replacement of the jet by a stationary wire inside the conical implosion.
86 - S. Kawata , T. Karino , Y. J. Gu 2018
The paper presents a review of dynamic stabilization mechanisms for plasma instabilities. One of the dynamic stabilization mechanisms for plasma instability was proposed in the papers [Phys. Plasmas 19, 024503(2012) and references therein], based on a perturbation phase control. In general, instabilities emerge from the perturbations of the physical quantity. Normally the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superimposition of perturbations imposed actively: if the perturbation is introduced by, for example, a driving beam axis oscillation or so, the perturbation phase can be controlled and the instability growth is mitigated by the superimposition of the growing perturbations. Based on this mechanism we present the application results of the dynamic stabilization mechanism to the Rayleigh-Taylor (R-T) instability and to the filamentation instability as typical examples in this paper. On the other hand, in the paper [Comments Plasma Phys. Controlled Fusion 3, 1(1977)] another mechanism was proposed to stabilize the R-T instability based on the strong oscillation of acceleration, which was realized by the laser intensity modulation in laser inertial fusion [Phys. Rev. Lett. 71, 3131(1993)]. In the latter mechanism, the total acceleration strongly oscillates, so that the additional oscillating force is added to create a new stable window in the system. Originally the latter mechanism was proposed by P. L. Kapitza, and it was applied to the stabilization of an inverted pendulum. In this paper we review the two dynamic stabilization mechanisms, and present the application results of the former dynamic stabilization mechanism.
134 - J.Anderson , H. Nordman , R. Singh 2009
In the present work the zonal flow (ZF) growth rate in toroidal ion-temperature-gradient (ITG) mode turbulence including the effects of elongation is studied analytically. The scaling of the ZF growth with plasma parameters is examined for typical to kamak parameter values. The physical model used for the toroidal ITG driven mode is based on the ion continuity and ion temperature equations whereas the ZF evolution is described by the vorticity equation. The results indicate that a large ZF growth is found close to marginal stability and for peaked density profiles and these effects may be enhanced by elongation.
Exact solutions of a magnetized plasma in a vorticity containing shear flow for constant temperature are presented. This is followed by the modification of these solutions by thermomagnetic currents in the presence of temperature gradients. It is sho wn that solutions which are unstable for a subsonic flow, are stable if the flow is supersonic. The results are applied to the problem of vorticity shear flow stabilization of a linear z-pinch discharge.
66 - Y. Li , R. Samtaney , D. Bond 2020
The two-fluid (ions and electrons) plasma Richtmyer-Meshkov instability of a cylindrical light/heavy density interface is numerically investigated without an initial magnetic field. Varying the Debye length scale, we examine the effects of the coupli ng between the electron and ion fluids. When the coupling becomes strong, the electrons are restricted to co-move with the ions and the resulting evolution is similar to the hydrodynamic neutral fluid case. The charge separation that occurs between the electrons and ions results in self-generated electromagnetic fields. We show that the Biermann battery effect dominates the generation of magnetic field when the coupling between the electrons and ions is weak. In addition to the Rayleigh-Tayler stabilization effect during flow deceleration, the interfaces are accelerated by the induced spatio-temporally varying Lorentz force. As a consequence, the perturbations develop into the Rayleigh-Taylor instability, leading to an enhancement of the perturbation amplitude compared with the hydrodynamic case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا