ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Hierarchical Neural Network for Feature Learning on Point Cloud

113   0   0.0 ( 0 )
 نشر من قبل Can Chen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The analyses relying on 3D point clouds are an utterly complex task, often involving million of points, but also requiring computationally efficient algorithms because of many real-time applications; e.g. autonomous vehicle. However, point clouds are intrinsically irregular and the points are sparsely distributed in a non-Euclidean space, which normally requires point-wise processing to achieve high performances. Although shared filter matrices and pooling layers in convolutional neural networks (CNNs) are capable of reducing the dimensionality of the problem and extracting high-level information simultaneously, grids and highly regular data format are required as input. In order to balance model performance and complexity, we introduce a novel neural network architecture exploiting local features from a manually subsampled point set. In our network, a recursive farthest point sampling method is firstly applied to efficiently cover the entire point set. Successively, we employ the k-nearest neighbours (knn) algorithm to gather local neighbourhood for each group of the subsampled points. Finally, a multiple layer perceptron (MLP) is applied on the subsampled points and edges that connect corresponding point and neighbours to extract local features. The architecture has been tested for both shape classification and segmentation using the ModelNet40 and ShapeNet part datasets, in order to show that the network achieves the best trade-off in terms of competitive performance when compared to other state-of-the-art algorithms.



قيم البحث

اقرأ أيضاً

Despite the remarkable success of deep learning, optimal convolution operation on point cloud remains indefinite due to its irregular data structure. In this paper, we present Cubic Kernel Convolution (CKConv) that learns to voxelize the features of local points by exploiting both continuous and discrete convolutions. Our continuous convolution uniquely employs a 3D cubic form of kernel weight representation that splits a feature into voxels in embedding space. By consecutively applying discrete 3D convolutions on the voxelized features in a spatial manner, preceding continuous convolution is forced to learn spatial feature mapping, i.e., feature voxelization. In this way, geometric information can be detailed by encoding with subdivided features, and our 3D convolutions on these fixed structured data do not suffer from discretization artifacts thanks to voxelization in embedding space. Furthermore, we propose a spatial attention module, Local Set Attention (LSA), to provide comprehensive structure awareness within the local point set and hence produce representative features. By learning feature voxelization with LSA, CKConv can extract enriched features for effective point cloud analysis. We show that CKConv has great applicability to point cloud processing tasks including object classification, object part segmentation, and scene semantic segmentation with state-of-the-art results.
Point cloud analysis is very challenging, as the shape implied in irregular points is difficult to capture. In this paper, we propose RS-CNN, namely, Relation-Shape Convolutional Neural Network, which extends regular grid CNN to irregular configurati on for point cloud analysis. The key to RS-CNN is learning from relation, i.e., the geometric topology constraint among points. Specifically, the convolutional weight for local point set is forced to learn a high-level relation expression from predefined geometric priors, between a sampled point from this point set and the others. In this way, an inductive local representation with explicit reasoning about the spatial layout of points can be obtained, which leads to much shape awareness and robustness. With this convolution as a basic operator, RS-CNN, a hierarchical architecture can be developed to achieve contextual shape-aware learning for point cloud analysis. Extensive experiments on challenging benchmarks across three tasks verify RS-CNN achieves the state of the arts.
86 - Fan Lu , Guang Chen , Yinlong Liu 2021
Point cloud registration is a fundamental problem in 3D computer vision. Outdoor LiDAR point clouds are typically large-scale and complexly distributed, which makes the registration challenging. In this paper, we propose an efficient hierarchical net work named HRegNet for large-scale outdoor LiDAR point cloud registration. Instead of using all points in the point clouds, HRegNet performs registration on hierarchically extracted keypoints and descriptors. The overall framework combines the reliable features in deeper layer and the precise position information in shallower layers to achieve robust and precise registration. We present a correspondence network to generate correct and accurate keypoints correspondences. Moreover, bilateral consensus and neighborhood consensus are introduced for keypoints matching and novel similarity features are designed to incorporate them into the correspondence network, which significantly improves the registration performance. Besides, the whole network is also highly efficient since only a small number of keypoints are used for registration. Extensive experiments are conducted on two large-scale outdoor LiDAR point cloud datasets to demonstrate the high accuracy and efficiency of the proposed HRegNet. The project website is https://ispc-group.github.io/hregnet.
Three-dimensional object recognition has recently achieved great progress thanks to the development of effective point cloud-based learning frameworks, such as PointNet and its extensions. However, existing methods rely heavily on fully connected lay ers, which introduce a significant amount of parameters, making the network harder to train and prone to overfitting problems. In this paper, we propose a simple yet effective framework for point set feature learning by leveraging a nonlinear activation layer encoded by Radial Basis Function (RBF) kernels. Unlike PointNet variants, that fail to recognize local point patterns, our approach explicitly models the spatial distribution of point clouds by aggregating features from sparsely distributed RBF kernels. A typical RBF kernel, e.g. Gaussian function, naturally penalizes long-distance response and is only activated by neighboring points. Such localized response generates highly discriminative features given different point distributions. In addition, our framework allows the joint optimization of kernel distribution and its receptive field, automatically evolving kernel configurations in an end-to-end manner. We demonstrate that the proposed network with a single RBF layer can outperform the state-of-the-art Pointnet++ in terms of classification accuracy for 3D object recognition tasks. Moreover, the introduction of nonlinear mappings significantly reduces the number of network parameters and computational cost, enabling significantly faster training and a deployable point cloud recognition solution on portable devices with limited resources.
Features that are equivariant to a larger group of symmetries have been shown to be more discriminative and powerful in recent studies. However, higher-order equivariant features often come with an exponentially-growing computational cost. Furthermor e, it remains relatively less explored how rotation-equivariant features can be leveraged to tackle 3D shape alignment tasks. While many past approaches have been based on either non-equivariant or invariant descriptors to align 3D shapes, we argue that such tasks may benefit greatly from an equivariant framework. In this paper, we propose an effective and practical SE(3) (3D translation and rotation) equivariant network for point cloud analysis that addresses both problems. First, we present SE(3) separable point convolution, a novel framework that breaks down the 6D convolution into two separable convolutional operators alternatively performed in the 3D Euclidean and SO(3) spaces. This significantly reduces the computational cost without compromising the performance. Second, we introduce an attention layer to effectively harness the expressiveness of the equivariant features. While jointly trained with the network, the attention layer implicitly derives the intrinsic local frame in the feature space and generates attention vectors that can be integrated into different alignment tasks. We evaluate our approach through extensive studies and visual interpretations. The empirical results demonstrate that our proposed model outperforms strong baselines in a variety of benchmarks
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا