ﻻ يوجد ملخص باللغة العربية
Point cloud analysis is very challenging, as the shape implied in irregular points is difficult to capture. In this paper, we propose RS-CNN, namely, Relation-Shape Convolutional Neural Network, which extends regular grid CNN to irregular configuration for point cloud analysis. The key to RS-CNN is learning from relation, i.e., the geometric topology constraint among points. Specifically, the convolutional weight for local point set is forced to learn a high-level relation expression from predefined geometric priors, between a sampled point from this point set and the others. In this way, an inductive local representation with explicit reasoning about the spatial layout of points can be obtained, which leads to much shape awareness and robustness. With this convolution as a basic operator, RS-CNN, a hierarchical architecture can be developed to achieve contextual shape-aware learning for point cloud analysis. Extensive experiments on challenging benchmarks across three tasks verify RS-CNN achieves the state of the arts.
Three-dimensional (3D) shape recognition has drawn much research attention in the field of computer vision. The advances of deep learning encourage various deep models for 3D feature representation. For point cloud and multi-view data, two popular 3D
Features that are equivariant to a larger group of symmetries have been shown to be more discriminative and powerful in recent studies. However, higher-order equivariant features often come with an exponentially-growing computational cost. Furthermor
In order to achieve better performance for point cloud analysis, many researchers apply deeper neural networks using stacked Multi-Layer-Perceptron (MLP) convolutions over irregular point cloud. However, applying dense MLP convolutions over large amo
Convolutional neural network has made remarkable achievements in classification of idealized point cloud, however, non-idealized point cloud classification is still a challenging task. In this paper, DNDFN, namely, Dual-Neighborhood Deep Fusion Netwo
Discrete point cloud objects lack sufficient shape descriptors of 3D geometries. In this paper, we present a novel method for aggregating hypothetical curves in point clouds. Sequences of connected points (curves) are initially grouped by taking guid