ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep RBFNet: Point Cloud Feature Learning using Radial Basis Functions

239   0   0.0 ( 0 )
 نشر من قبل Weikai Chen
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Three-dimensional object recognition has recently achieved great progress thanks to the development of effective point cloud-based learning frameworks, such as PointNet and its extensions. However, existing methods rely heavily on fully connected layers, which introduce a significant amount of parameters, making the network harder to train and prone to overfitting problems. In this paper, we propose a simple yet effective framework for point set feature learning by leveraging a nonlinear activation layer encoded by Radial Basis Function (RBF) kernels. Unlike PointNet variants, that fail to recognize local point patterns, our approach explicitly models the spatial distribution of point clouds by aggregating features from sparsely distributed RBF kernels. A typical RBF kernel, e.g. Gaussian function, naturally penalizes long-distance response and is only activated by neighboring points. Such localized response generates highly discriminative features given different point distributions. In addition, our framework allows the joint optimization of kernel distribution and its receptive field, automatically evolving kernel configurations in an end-to-end manner. We demonstrate that the proposed network with a single RBF layer can outperform the state-of-the-art Pointnet++ in terms of classification accuracy for 3D object recognition tasks. Moreover, the introduction of nonlinear mappings significantly reduces the number of network parameters and computational cost, enabling significantly faster training and a deployable point cloud recognition solution on portable devices with limited resources.



قيم البحث

اقرأ أيضاً

We propose a discretization of the optimality principle in dynamic programming based on radial basis functions and Shepards moving least squares approximation method. We prove convergence of the approximate optimal value function to the true one and present several numerical experiments.
Despite the remarkable success of deep learning, optimal convolution operation on point cloud remains indefinite due to its irregular data structure. In this paper, we present Cubic Kernel Convolution (CKConv) that learns to voxelize the features of local points by exploiting both continuous and discrete convolutions. Our continuous convolution uniquely employs a 3D cubic form of kernel weight representation that splits a feature into voxels in embedding space. By consecutively applying discrete 3D convolutions on the voxelized features in a spatial manner, preceding continuous convolution is forced to learn spatial feature mapping, i.e., feature voxelization. In this way, geometric information can be detailed by encoding with subdivided features, and our 3D convolutions on these fixed structured data do not suffer from discretization artifacts thanks to voxelization in embedding space. Furthermore, we propose a spatial attention module, Local Set Attention (LSA), to provide comprehensive structure awareness within the local point set and hence produce representative features. By learning feature voxelization with LSA, CKConv can extract enriched features for effective point cloud analysis. We show that CKConv has great applicability to point cloud processing tasks including object classification, object part segmentation, and scene semantic segmentation with state-of-the-art results.
The analyses relying on 3D point clouds are an utterly complex task, often involving million of points, but also requiring computationally efficient algorithms because of many real-time applications; e.g. autonomous vehicle. However, point clouds are intrinsically irregular and the points are sparsely distributed in a non-Euclidean space, which normally requires point-wise processing to achieve high performances. Although shared filter matrices and pooling layers in convolutional neural networks (CNNs) are capable of reducing the dimensionality of the problem and extracting high-level information simultaneously, grids and highly regular data format are required as input. In order to balance model performance and complexity, we introduce a novel neural network architecture exploiting local features from a manually subsampled point set. In our network, a recursive farthest point sampling method is firstly applied to efficiently cover the entire point set. Successively, we employ the k-nearest neighbours (knn) algorithm to gather local neighbourhood for each group of the subsampled points. Finally, a multiple layer perceptron (MLP) is applied on the subsampled points and edges that connect corresponding point and neighbours to extract local features. The architecture has been tested for both shape classification and segmentation using the ModelNet40 and ShapeNet part datasets, in order to show that the network achieves the best trade-off in terms of competitive performance when compared to other state-of-the-art algorithms.
139 - Xuyang Bai , Zixin Luo , Lei Zhou 2021
Removing outlier correspondences is one of the critical steps for successful feature-based point cloud registration. Despite the increasing popularity of introducing deep learning methods in this field, spatial consistency, which is essentially estab lished by a Euclidean transformation between point clouds, has received almost no individual attention in existing learning frameworks. In this paper, we present PointDSC, a novel deep neural network that explicitly incorporates spatial consistency for pruning outlier correspondences. First, we propose a nonlocal feature aggregation module, weighted by both feature and spatial coherence, for feature embedding of the input correspondences. Second, we formulate a differentiable spectral matching module, supervised by pairwise spatial compatibility, to estimate the inlier confidence of each correspondence from the embedded features. With modest computation cost, our method outperforms the state-of-the-art hand-crafted and learning-based outlier rejection approaches on several real-world datasets by a significant margin. We also show its wide applicability by combining PointDSC with different 3D local descriptors.
In this paper we consider two sources of enhancement for the meshfree Lagrangian particle method smoothed particle hydrodynamics (SPH) by improving the accuracy of the particle approximation. Namely, we will consider shape functions constructed using : moving least-squares approximation (MLS); radial basis functions (RBF). Using MLS approximation is appealing because polynomial consistency of the particle approximation can be enforced. RBFs further appeal as they allow one to dispense with the smoothing-length -- the parameter in the SPH method which governs the number of particles within the support of the shape function. Currently, only ad hoc methods for choosing the smoothing-length exist. We ensure that any enhancement retains the conservative and meshfree nature of SPH. In doing so, we derive a new set of variationally-consistent hydrodynamic equations. Finally, we demonstrate the performance of the new equations on the Sod shock tube problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا