ترغب بنشر مسار تعليمي؟ اضغط هنا

Absolving the SSINS of Precision Interferometric Radio Data: A New Technique for Mitigating Faint Radio Frequency Interference

143   0   0.0 ( 0 )
 نشر من قبل Michael Wilensky
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new pipeline for analyzing and mitigating radio frequency interference (RFI), which we call Sky-Subtracted Incoherent Noise Spectra (SSINS). SSINS is designed to identify and remove faint RFI below the single baseline thermal noise by employing a frequency-matched detection algorithm on baseline-averaged amplitudes of time-differenced visibilities. We demonstrate the capabilities of SSINS using the Murchison Widefield Array (MWA) in Western Australia. We successfully image aircraft flying over the array via digital television (DTV) reflection detected using SSINS and summarize an RFI occupancy survey of MWA Epoch of Reionization data. We describe how to use SSINS with new data using a documented, publicly available implementation with comprehensive usage tutorials.



قيم البحث

اقرأ أيضاً

We introduce the Fast Holographic Deconvolution method for analyzing interferometric radio data. Our new method is an extension of A-projection/software-holography/forward modeling analysis techniques and shares their precision deconvolution and wide field polarimetry, while being significantly faster than current implementations that use full direction-dependent antenna gains. Using data from the MWA 32 antenna prototype, we demonstrate the effectiveness and precision of our new algorithm. Fast Holographic Deconvolution may be particularly important for upcoming 21 cm cosmology observations of the Epoch of Reionization and Dark Energy where foreground subtraction is intimately related to the precision of the data reduction.
117 - S. Faridani 2017
The short-spacing problem describes the inherent inability of radio-interferometric arrays to measure the integrated flux and structure of diffuse emission associated with extended sources. New interferometric arrays, such as SKA, require solutions t o efficiently combine interferometer and single-dish data. We present a new and open source approach for merging single-dish and cleaned interferometric data sets requiring a minimum of data manipulation while offering a rigid flux determination and full high angular resolution. Our approach combines single-dish and cleaned interferometric data in the image domain. This approach is tested for both Galactic and extragalactic HI data sets. Furthermore, a quantitative comparison of our results to commonly used methods is provided. Additionally, for the interferometric data sets of NGC4214 and NGC5055, we study the impact of different imaging parameters as well as their influence on the combination for NGC4214. The approach does not require the raw data (visibilities) or any additional special information such as antenna patterns. This is advantageous especially in the light of upcoming radio surveys with heterogeneous antenna designs.
The redshifted 21 cm line of neutral hydrogen is a promising probe of the Epoch of Reionization (EoR). However, its detection requires a thorough understanding and control of the systematic errors. We study two systematic biases observed in the LOFAR EoR residual data after calibration and subtraction of bright discrete foreground sources. The first effect is a suppression in the diffuse foregrounds, which could potentially mean a suppression of the 21 cm signal. The second effect is an excess of noise beyond the thermal noise. The excess noise shows fluctuations on small frequency scales, and hence it can not be easily removed by foreground removal or avoidance methods. Our analysis suggests that sidelobes of residual sources due to the chromatic point spread function and ionospheric scintillation can not be the dominant causes of the excess noise. Rather, both the suppression of diffuse foregrounds and the excess noise can occur due to calibration with an incomplete sky model containing predominantly bright discrete sources. We show that calibrating only on bright sources can cause suppression of other signals and introduce an excess noise in the data. The levels of the suppression and excess noise depend on the relative flux of sources which are not included in the model with respect to the flux of modeled sources. We discuss possible solutions such as using only long baselines to calibrate the interferometric gain solutions as well as simultaneous multi-frequency calibration along with their benefits and shortcomings.
We develop two algorithms, based on maximum likelihood (ML) inference, for estimating the parameters of polarized radio sources which emit at a single rotation measure (RM), e.g., pulsars. These algorithms incorporate the flux density spectrum of the source, either a power law or a scaled version of the Stokes I spectrum, and a variation in sensitivity across the observing band. We quantify the detection significance and measurement uncertainties in the fitted parameters, and we derive weight
153 - H. T. Intema 2014
High-resolution astronomical imaging at sub-GHz radio frequencies has been available for more than 15 years, with the VLA at 74 and 330 MHz, and the GMRT at 150, 240, 330 and 610 MHz. Recent developments include wide-bandwidth upgrades for VLA and GM RT, and commissioning of the aperture-array-based, multi-beam telescope LOFAR. A common feature of these telescopes is the necessity to deconvolve the very many detectable sources within their wide fields-of-view and beyond. This is complicated by gain variations in the radio signal path that depend on viewing direction. One such example is phase errors due to the ionosphere. Here I discuss the inner workings of SPAM, a set of AIPS-based data reduction scripts in Python that includes direction-dependent calibration and imaging. Since its first version in 2008, SPAM has been applied to many GMRT data sets at various frequencies. Many valuable lessons were learned, and translated into various SPAM software modifications. Nowadays, semi-automated SPAM data reduction recipes can be applied to almost any GMRT data set, yielding good quality continuum images comparable with (or often better than) hand-reduced results. SPAM is currently being migrated from AIPS to CASA with an extension to handle wide bandwidths. This is aimed at providing users of the VLA low-band system and the upcoming wide-bandwidth GMRT with the necessary data reduction tools.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا