ﻻ يوجد ملخص باللغة العربية
We develop two algorithms, based on maximum likelihood (ML) inference, for estimating the parameters of polarized radio sources which emit at a single rotation measure (RM), e.g., pulsars. These algorithms incorporate the flux density spectrum of the source, either a power law or a scaled version of the Stokes I spectrum, and a variation in sensitivity across the observing band. We quantify the detection significance and measurement uncertainties in the fitted parameters, and we derive weight
We present a new algorithm for fitting and classifying polarized radio sources, which is based on the QU fitting method introduced by OSullivan et al. and on our analysis of pulsars. Then we test this algorithm using Monte Carlo simulations of observ
We introduce a new pipeline for analyzing and mitigating radio frequency interference (RFI), which we call Sky-Subtracted Incoherent Noise Spectra (SSINS). SSINS is designed to identify and remove faint RFI below the single baseline thermal noise by
With this paper we participate to the call for ideas issued by the European Space Agency to define the Science Program and plan for space missions from 2035 to 2050. In particular we present five science cases where major advancements can be achieved
A community meeting on the topic of Radio Astronomy in the LSST Era was hosted by the National Radio Astronomy Observatory in Charlottesville, VA (2013 May 6--8). The focus of the workshop was on time domain radio astronomy and sky surveys. For the t
We discuss the science drivers for ALMA Band 2 which spans the frequency range from 67 to 90 GHz. The key science in this frequency range are the study of the deuterated molecules in cold, dense, quiescent gas and the study of redshifted emission fro