ﻻ يوجد ملخص باللغة العربية
High-resolution astronomical imaging at sub-GHz radio frequencies has been available for more than 15 years, with the VLA at 74 and 330 MHz, and the GMRT at 150, 240, 330 and 610 MHz. Recent developments include wide-bandwidth upgrades for VLA and GMRT, and commissioning of the aperture-array-based, multi-beam telescope LOFAR. A common feature of these telescopes is the necessity to deconvolve the very many detectable sources within their wide fields-of-view and beyond. This is complicated by gain variations in the radio signal path that depend on viewing direction. One such example is phase errors due to the ionosphere. Here I discuss the inner workings of SPAM, a set of AIPS-based data reduction scripts in Python that includes direction-dependent calibration and imaging. Since its first version in 2008, SPAM has been applied to many GMRT data sets at various frequencies. Many valuable lessons were learned, and translated into various SPAM software modifications. Nowadays, semi-automated SPAM data reduction recipes can be applied to almost any GMRT data set, yielding good quality continuum images comparable with (or often better than) hand-reduced results. SPAM is currently being migrated from AIPS to CASA with an extension to handle wide bandwidths. This is aimed at providing users of the VLA low-band system and the upcoming wide-bandwidth GMRT with the necessary data reduction tools.
FARSIDE (Farside Array for Radio Science Investigations of the Dark ages and Exoplanets) is a Probe-class concept to place a low radio frequency interferometric array on the farside of the Moon. A NASA-funded design study, focused on the instrument,
The redshifted 21 cm line of neutral hydrogen is a promising probe of the Epoch of Reionization (EoR). However, its detection requires a thorough understanding and control of the systematic errors. We study two systematic biases observed in the LOFAR
We introduce a new pipeline for analyzing and mitigating radio frequency interference (RFI), which we call Sky-Subtracted Incoherent Noise Spectra (SSINS). SSINS is designed to identify and remove faint RFI below the single baseline thermal noise by
In the framework of the unification scheme of radio-loud active galactic nuclei, BL Lac objects and quasars are the beamed end-on counterparts of low-power (FRI) and high-power (FRII) radio galaxies, respectively. Some BL Lacs have been found to poss
We present two estimators to quantify the angular power spectrum of the sky signal directly from the visibilities measured in radio interferometric observations. This is relevant for both the foregrounds and the cosmological 21-cm signal buried there