ﻻ يوجد ملخص باللغة العربية
The electronic properties of graphene superlattices have attracted intense interest that was further stimulated by the recent observation of novel many-body states at magic angles in twisted bilayer graphene (BLG). For very small (marginal) twist angles of 0.1 deg, BLG has been shown to exhibit a strain-accompanied reconstruction that results in submicron-size triangular domains with the Bernal stacking. If the interlayer bias is applied to open an energy gap inside the domain regions making them insulating, marginally-twisted BLG is predicted to remain conductive due to a triangular network of chiral one-dimensional (1D) states hosted by domain boundaries. Here we study electron transport through this network and report giant Aharonov-Bohm oscillations persisting to temperatures above 100 K. At liquid helium temperatures, the network resistivity exhibits another kind of oscillations that appear as a function of carrier density and are accompanied by a sign-changing Hall effect. The latter are attributed to consecutive population of the flat minibands formed by the 2D network of 1D states inside the gap. Our work shows that marginally twisted BLG is markedly distinct from other 2D electronic systems, including BLG at larger twist angles, and offers a fascinating venue for further research.
The advent of topological phases of matter revealed a variety of observed boundary phenomena, such as chiral and helical modes found at the edges of two-dimensional (2D) topological insulators. Antichiral states in 2D semimetals, i.e., copropagating
The combination of field tunable bandgap, topological edge states, and valleys in the band structure, makes insulating bilayer graphene a unique localized system, where the scaling laws of dimensionless conductance g remain largely unexplored. Here w
Twisted heterostructures of two-dimensional crystals offer almost unlimited scope for the design of novel metamaterials. Here we demonstrate a room-temperature ferroelectric semiconductor that is assembled using mono- or few- layer MoS2. These van de
Recent studies have shown that moir{e} flat bands in a twisted bilayer graphene(TBG) can acquire nontrivial Berry curvatures when aligned with hexagonal boron nitride substrate [1, 2], which can be manifested as a correlated Chern insulator near the
Twisted bilayer graphene (TBG) exhibits fascinating correlation-driven phenomena like the superconductivity and Mott insulating state, with flat bands and a chiral lattice structure. We find by quantum transport calculations that the chirality leads