ترغب بنشر مسار تعليمي؟ اضغط هنا

Axial Vector $cc$ and $bb$ Diquark Masses from QCD Laplace Sum-Rules

177   0   0.0 ( 0 )
 نشر من قبل Alex Palameta
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Constituent mass predictions for axial vector (i.e., $J^P=1^+$) $cc$ and $bb$ colour antitriplet diquarks are generated using QCD Laplace sum-rules. We calculate the diquark correlator within the operator product expansion to NLO, including terms proportional to the four- and six-dimensional gluon and six-dimensional quark condensates. The sum-rules analyses stabilize, and we find that the mass of the $cc$ diquark is 3.51~GeV and the mass of the $bb$ diquark is 8.67~GeV. Using these diquark masses as inputs, we calculate several tetraquark masses within the Type-II diquark-antidiquark tetraquark model.

قيم البحث

اقرأ أيضاً

Diquarks with $J^{P}=0^{pm}$, $1^{pm}$ containing a heavy (charm or bottom) quark and a light quark are investigated using QCD Laplace sum rules. Masses are determined using appropriately constructed gauge invariant correlation functions, including f or the first time next-to-leading order perturbative contributions. The $J^P=0^+$ and $1^+$ charm-light diquark masses are respectively found to be 1.86$pm$0.05 GeV and 1.87$pm$0.10 GeV, while those of the $0^+$ and $1^+$ bottom-light diquarks are both determined to be 5.08$pm$0.04 GeV. The sum rules derived for heavy-light diquarks with negative parity are poorly behaved and do not permit unambiguous mass predictions, in agreement with previous results for negative parity light diquarks. The scalar and axial vector heavy-light diquark masses are degenerate within uncertainty, as expected by heavy quark symmetry considerations. Furthermore, these mass predictions are in good agreement with masses extracted in constituent diquark models of the tetraquark candidates X(3872) and $Y_b(10890)$. Thus these results provide QCD support for the interpretation of the X(3872) and $Y_b(10890)$ as $J^{PC}=1^{++}$ tetraquark states composed of diquark clusters. Further implications for tetraquarks among the heavy quarkonium-like XYZ states are discussed.
The QCD up- and down-quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector current divergences. In the QCD sector this correlator is known to five loop order in perturbative QCD (PQCD ), together with non-perturbative corrections from the quark and gluon condensates. This FESR is designed to reduce considerably the systematic uncertainties arising from the hadronic spectral function. The determination is done in the framework of both fixed order and contour improved perturbation theory. Results from the latter, involving far less systematic uncertainties, are: $bar{m}_u (2, mbox{GeV}) = (2.6 , pm , 0.4) , {mbox{MeV}}$, $bar{m}_d (2, mbox{GeV}) = (5.3 , pm , 0.4) , {mbox{MeV}}$, and the sum $bar{m}_{ud} equiv (bar{m}_u , + , bar{m}_d)/2$, is $bar{m}_{ud}({ 2 ,mbox{GeV}}) =( 3.9 , pm , 0.3 ,) {mbox{MeV}}$.
163 - R. Albuquerque 2018
We review our results in Refs.[1,2] for the masses and couplings of heavy-light DD(BB)-like molecules and (Qq)(Qq)-like four-quark states from relativistic QCD Laplace sum rules (LSR) where next-to-next-to-leading order (N2LO) PT corrections in the c hiral limit, next-to-leading order (NLO) SU3 PT corrections and non-perturbative contributions up to dimension d=6-8 are included. The factorization properties of molecule and four-quark currents have been used for the estimate of the higher order PT corrections. New integrated compact expressions of the spectral functions at leading order (LO) of perturbative QCD and up to dimensions d< (6 - 8) non-perturbative condensates are presented. The results are summarized in Tables 5 to 10, from which we conclude, within the errors, that the observed XZ states are good candidates for being 1^{++} and 0^{++} molecules or/and four-quark states, contrary to the observed Y states which are too light compared to the predicted 1^{-pm} and 0^{-pm} states. We find that the SU3 breakings are relatively small for the masses (< 10(resp. 3)%) for the charm (resp. bottom) channels while they are large (< 20%) for the couplings which decrease faster (1/m_{b}^{3/2}) than 1/m_{b}^{1/2} of HQET. QCD spectral sum rules (QSSR) approach cannot clearly separate (within the errors) molecules from four-quark states having the same quantum numbers. Results for the BK (DK)-like molecules and (Qq)(us)-like four-quark states from [3] are also reviewed which do not favour the molecule or/and four-quark interpretation of the X(5568). We suggest to scan the charm (2327 ~ 2444) MeV and bottom (5173 ~ 5226) MeV regions for detecting the (unmixed)(cu)ds and (bu)ds states. We expect that future experimental data and lattice results will check our predictions.
We present a global analysis of the observed Z_c, Z_cs and future Z_css-like spectra using the inverse Laplace transform (LSR) version of QCD spectral sum rules (QSSR) within stability criteria. Integrated compact QCD expressions of the LO spectral f unctions up to dimension-six condensates are given. Next-to-Leading Order (NLO) factorized perturbative contributions are included. We re-emphasize the importance to include PT radiative corrections (though numerically small) for heavy quark sum rules in order to justify the (ad hoc) definition and value of the heavy quark mass used frequently at LO in the literature. We also demonstrate that, contrary to a naive qualitative 1/N_c counting, the two-meson scattering contributions to the four-quark spectral functions are numerically negligible confirming the reliability of the LSR predictions. Our results are summarized in Tables III to VI. The Z_c(3900) and Z_cs(3983) spectra are well reproduced by the T_c(3900) and T_cs(3973) tetramoles (superposition of quasi-degenerated molecules and tetraquark states having the same quantum numbers and with almost equal couplings to the currents). The Z_c(4025) or Z_c(4040) state can be fitted with the D*_0D_1 molecule having a mass 4023(130) MeV while the Z_cs bump around 4.1 GeV can be likely due to the (D^*_s0D_1+ D^*_0D_s1) molecules. The Z_c(4430) can be a radial excitation of the Z_c(3900) weakly coupled to the current, while all strongly coupled ones are in the region (5634-6527) MeV. The double strange tetramole state T_css which one may identify with the future Z_css is predicted to be at 4064(46) MeV. It is remarkable to notice the regular mass-spliitings of the tetramoles due to SU(3) breakings M_{T_cs}-M_{T_c}= M_{T_css}-M_{T_cs= (73- 91) MeV.
We study $bar qq$-hybrid mixing for the light vector mesons and $bar qq$-glueball mixing for the light scalar mesons in Monte-Carlo based QCD Laplace sum rules. By calculating the two-point correlation function of a vector $bar qgamma_mu q$ (scalar $bar q q$) current and a hybrid (glueball) current we are able to estimate the mass and the decay constants of the corresponding mixed physical state that couples to both currents. Our results do not support strong quark/gluonic mixing for either the $1^{--}$ or the $0^{++}$ states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا