ترغب بنشر مسار تعليمي؟ اضغط هنا

Up- and down-quark masses from QCD sum rules

168   0   0.0 ( 0 )
 نشر من قبل C. A. Dominguez
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The QCD up- and down-quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector current divergences. In the QCD sector this correlator is known to five loop order in perturbative QCD (PQCD), together with non-perturbative corrections from the quark and gluon condensates. This FESR is designed to reduce considerably the systematic uncertainties arising from the hadronic spectral function. The determination is done in the framework of both fixed order and contour improved perturbation theory. Results from the latter, involving far less systematic uncertainties, are: $bar{m}_u (2, mbox{GeV}) = (2.6 , pm , 0.4) , {mbox{MeV}}$, $bar{m}_d (2, mbox{GeV}) = (5.3 , pm , 0.4) , {mbox{MeV}}$, and the sum $bar{m}_{ud} equiv (bar{m}_u , + , bar{m}_d)/2$, is $bar{m}_{ud}({ 2 ,mbox{GeV}}) =( 3.9 , pm , 0.3 ,) {mbox{MeV}}$.



قيم البحث

اقرأ أيضاً

The up and down quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector divergences, to five loop order in Perturbative QCD (PQCD), and including leading non-perturbative QCD and higher order quark mass corrections. This FESR is designed to reduce considerably the systematic uncertainties arising from the (unmeasured) hadronic resonance sector, which in this framework contributes less than 3-4% to the quark mass. This is achieved by introducing an integration kernel in the form of a second degree polynomial, restricted to vanish at the peak of the two lowest lying resonances. The driving hadronic contribution is then the pion pole, with parameters well known from experiment. The determination is done in the framework of Contour Improved Perturbation Theory (CIPT), which exhibits a very good convergence, leading to a remarkably stable result in the unusually wide window $s_0 = 1.0 - 4.0 {GeV}^2$, where $s_0$ is the radius of the integration contour in the complex energy (squared) plane. The results are: $m_u(Q= 2 {GeV}) = 2.9 pm 0.2 $ MeV, $m_d(Q= 2 {GeV}) = 5.3 pm 0.4$ MeV, and $(m_u + m_d)/2 = 4.1 pm 0.2$ Mev (at a scale Q=2 GeV).
64 - I. Masina , C.A. Savoy 2006
The quark and charged lepton masses and the angles and phase of the CKM mixing matrix are nicely reproduced in a model which assumes SU(3)xSU(3) flavour symmetry broken by the v.e.v.s of fields in its bi-fundamental representation. The relations amon g the quark mass eigenvalues, m_u/m_c approx m_c/m_t approx m^2_d/m^2_s approx m^2_s/m^2_b approx Lambda^2_{GUT}/M^2_{Pl}, follow from the broken flavour symmetry. Large tan(beta) is required which also provides the best fits to data for the obtained textures. Lepton-quark grandunification with a field that breaks both SU(5) and the flavour group correctly extends the predictions to the charged lepton masses. The seesaw extension of the model to the neutrino sector predicts a Majorana mass matrix quadratically hierarchical as compared to the neutrino Dirac mass matrix, naturally yielding large mixings and low mass hierarchy for neutrinos.
The light quark masses are determined using a new QCD Finite Energy Sum Rule (FESR) in the pseudoscalar channel. This FESR involves an integration kernel designed to reduce considerably the contribution of the (unmeasured) hadronic resonance spectral functions. The QCD sector of the FESR includes perturbative QCD (PQCD) to five loop order, and the leading non-perturbative terms. In the hadronic sector the dominant contribution is from the pseudoscalar meson pole. Using Contour Improved Perturbation Theory (CIPT) the results for the quark masses at a scale of 2 GeV are $m_u(Q= 2 {GeV}) = 2.9 pm 0.2 {MeV}$, $m_d(Q= 2 {GeV}) = 5.3 pm 0.4 {MeV}$, and $m_s(Q= 2 {GeV}) = 102 pm 8 {MeV}$, for $Lambda = 381 pm 16 {MeV}$, corresponding to $alpha_s(M_tau^2) = 0.344 pm0.009$. In this framework the systematic uncertainty in the quark masses from the unmeasured hadronic resonance spectral function amounts to less than 2 - 3 %. The remaining uncertainties above arise from those in $Lambda$, the unknown six-loop PQCD contribution, and the gluon condensate, which are all potentially subject to improvement.
We calculate the up-, down-, strange-, charm-, and bottom-quark masses using the MILC highly improved staggered-quark ensembles with four flavors of dynamical quarks. We use ensembles at six lattice spacings ranging from $aapprox0.15$~fm to $0.03$~fm and with both physical and unphysical values of the two light and the strange sea-quark masses. We use a new method based on heavy-quark effective theory (HQET) to extract quark masses from heavy-light pseudoscalar meson masses. Combining our analysis with our separate determination of ratios of light-quark masses we present masses of the up, down, strange, charm, and bottom quarks. Our results for the $overline{text{MS}}$-renormalized masses are $m_u(2~text{GeV}) = 2.130(41)$~MeV, $m_d(2~text{GeV}) = 4.675(56)$~MeV, $m_s(2~text{GeV}) = 92.47(69)$~MeV, $m_c(3~text{GeV}) = 983.7(5.6)$~MeV, and $m_c(m_c) = 1273(10)$~MeV, with four active flavors; and $m_b(m_b) = 4195(14)$~MeV with five active flavors. We also obtain ratios of quark masses $m_c/m_s = 11.783(25)$, $m_b/m_s = 53.94(12)$, and $m_b/m_c = 4.578(8)$. The result for $m_c$ matches the precision of the most precise calculation to date, and the other masses and all quoted ratios are the most precise to date. Moreover, these results are the first with a perturbative accuracy of $alpha_s^4$. As byproducts of our method, we obtain the matrix elements of HQET operators with dimension 4 and 5: $overline{Lambda}_text{MRS}=555(31)$~MeV in the minimal renormalon-subtracted (MRS) scheme, $mu_pi^2 = 0.05(22)~text{GeV}^2$, and $mu_G^2(m_b)=0.38(2)~text{GeV}^2$. The MRS scheme [Phys. Rev. D97, 034503 (2018), arXiv:1712.04983 [hep-ph]] is the key new aspect of our method.
240 - Stephan Narison 2020
We report results of our recent works [1,2] where we where the correlations between the c,b-quark running masses{m}_{c,b}, the gluon condensate<alpha_s G^2> and the QCD coupling alpha_s in the MS-scheme from an analysis of the charmonium and bottomiu m spectra and the B_c-meson mass. We use optimized ratios of relativistic Laplace sum rules (LSR) evaluated at the mu-subtraction stability point where higher orders PT and D< 6-8-dimensions non-perturbative condensates corrections are included. We obtain [1] alpha_s(2.85)=0.262(9) and alpha_s(9.50)=0.180(8) from the (pseudo)scalar M_{chi_{0c(0b)}}-M_{eta_{c(b)}} mass-splittings at mu=2.85(9.50) GeV. The most precise result from the charm channel leads to alpha_s(M_tau)=0.318(15) and alpha_s(M_Z)=0.1183(19)(3) in excellent agreement with the world average: alpha_s(M_Z)=0.1181(11)[3,4]. Updated results from a global fit of the (axial-)vector and (pseudo)scalar channels using Laplace and Moments sum rules @ N2LO [1] combined with the one from M_{B_c} [2] lead to the new tentative QCD spectral sum rules (QSSR) average : m_c(m_c)|_average= 1266(6) MeV and m_b(m_b)|_average=4196(8) MeV. The values of the gluon condensate <alpha_s G^2> from the (axial)-vector charmonium channels combined with previous determinations in Table 1, leads to the new QSSR average [1]: <alpha_s G^2>_average=(6.35pm 0.35)x 10^{-2} GeV^4. Our results clarify the (apparent) discrepancies between different estimates of <alpha_s G^2> from J/psi sum rule but also shows the sensitivity of the sum rules on the choice of the mu-subtraction scale. As a biproduct, we deduce the B_c-decay constants f_{B_c}=371(17) MeV and f_{B_c}(2S)< 139(6) MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا