ﻻ يوجد ملخص باللغة العربية
Diquarks with $J^{P}=0^{pm}$, $1^{pm}$ containing a heavy (charm or bottom) quark and a light quark are investigated using QCD Laplace sum rules. Masses are determined using appropriately constructed gauge invariant correlation functions, including for the first time next-to-leading order perturbative contributions. The $J^P=0^+$ and $1^+$ charm-light diquark masses are respectively found to be 1.86$pm$0.05 GeV and 1.87$pm$0.10 GeV, while those of the $0^+$ and $1^+$ bottom-light diquarks are both determined to be 5.08$pm$0.04 GeV. The sum rules derived for heavy-light diquarks with negative parity are poorly behaved and do not permit unambiguous mass predictions, in agreement with previous results for negative parity light diquarks. The scalar and axial vector heavy-light diquark masses are degenerate within uncertainty, as expected by heavy quark symmetry considerations. Furthermore, these mass predictions are in good agreement with masses extracted in constituent diquark models of the tetraquark candidates X(3872) and $Y_b(10890)$. Thus these results provide QCD support for the interpretation of the X(3872) and $Y_b(10890)$ as $J^{PC}=1^{++}$ tetraquark states composed of diquark clusters. Further implications for tetraquarks among the heavy quarkonium-like XYZ states are discussed.
Constituent mass predictions for axial vector (i.e., $J^P=1^+$) $cc$ and $bb$ colour antitriplet diquarks are generated using QCD Laplace sum-rules. We calculate the diquark correlator within the operator product expansion to NLO, including terms pro
Using the QCD sum rule approach we investigate the possible four-quark structure of the recently observed charmed scalar mesons $D_0^{0}(2308)$ (BELLE) and $D_0^{0,+}(2405)$ (FOCUS) and also of the very narrow $D_{sJ}^{+}(2317)$, firstly observed by
We use QCD Laplace sum-rules to predict masses of open-flavour heavy-light hybrids where one of the hybrids constituent quarks is a charm or bottom and the other is an up, down, or strange. We compute leading-order, diagonal correlation functions of
QCD Laplace sum-rules are used to calculate axial vector $(J^{PC}=1^{++})$ charmonium and bottomonium hybrid masses. Previous sum-rule studies of axial vector heavy quark hybrids did not include the dimension-six gluon condensate, which has been show
We study the role of diquarks in light baryons through point to point baryon correlators. We contrast results from quenched simulations with ones with two flavors of dynamical overlap fermions. The scalar, pseudoscalar and axial vector diquarks are c