ﻻ يوجد ملخص باللغة العربية
The use of entanglement witness (EW) for non-full separability and the Bell operator for non-local hidden-variables (LHV) model are analyzed by relating them to the Hilbert-Schmidt (HS) decomposition of n-qubits states and these methods are applied explicitly to some 3 and 4 qubits states. EW for non-full separability (fs) is given by fs parameter minus operator G where the choice of G in the HS decomposition leads to the fs parameter and to the condition for non-separability by using criterions which are different from those used for genuine entanglement. We analyze especially entangled states with probability p mixed with white noise with probability 1-p and find the critical value p(crit.) above which the system is not fully separable. As the choice of EW might not be optimal we add to the analysis of EW explicit construction of fully separable density matrix and find the critical value p below which the system is fully separable. If the two values for p coincide we conclude that this parameter gives the optimal result. Such optimal results are obtained in the present work for some 3 and 4 qubits entangled states mixed with white noise. The use of partial-transpose (PT ) (say relative to qubit A) gives also p value above which the system is not fully separable. The use of EW gives better results (or at least equal) than those obtained by PT .
Hilbert-Schmidt (HS) decompositions are employed for analyzing systems of n-qubits, and a qubit with a qudit. Negative eigenvalues, obtained by partial-transpose (PT) plus local unitary transformations (PTU) for one qubit from the whole system, are u
We study the mathematical structures and relations among some quantities in the theory of quantum entanglement, such as separability, weak Schmidt decompositions, Hadamard matrices etc.. We provide an operational method to identify the Schmidt-correl
We present a simple family of Bell inequalities applicable to a scenario involving arbitrarily many parties, each of which performs two binary-outcome measurements. We show that these inequalities are members of the complete set of full-correlation B
Recently, Coffman, Kundu, and Wootters introduced the residual entanglement for three qubits to quantify the three-qubit entanglement in Phys. Rev. A 61, 052306 (2000). In Phys. Rev. A 65, 032304 (2007), we defined the residual entanglement for $n$ q
Entanglement witnesses (EWs) are a fundamental tool for the detection of entanglement. We study the inertias of EWs, i.e., the triplet of the numbers of negative, zero, and positive eigenvalues respectively. We focus on the EWs constructed by the par