ﻻ يوجد ملخص باللغة العربية
We study the mathematical structures and relations among some quantities in the theory of quantum entanglement, such as separability, weak Schmidt decompositions, Hadamard matrices etc.. We provide an operational method to identify the Schmidt-correlated states by using weak Schmidt decomposition. We show that a mixed state is Schmidt-correlated if and only if its spectral decomposition consists of a set of pure eigenstates which can be simultaneously diagonalized in weak Schmidt decomposition, i.e. allowing for complex-valued diagonal entries. For such states, the separability is reduced to the orthogonality conditions of the vectors consisting of diagonal entries associated to the eigenstates, which is surprisingly related to the so-called complex Hadamard matrices. Using the Hadamard matrices, we provide a variety of generalized maximal entangled Bell bases.
The use of entanglement witness (EW) for non-full separability and the Bell operator for non-local hidden-variables (LHV) model are analyzed by relating them to the Hilbert-Schmidt (HS) decomposition of n-qubits states and these methods are applied e
The new method of multivariate data analysis based on the complements of classical probability distribution to quantum state and Schmidt decomposition is presented. We considered Schmidt formalism application to problems of statistical correlation an
In the standard geometric approach, the entanglement of a pure state is $sin^2theta$, where $theta$ is the angle between the entangled state and the closest separable state of products of normalised qubit states. We consider here a generalisation of
In the standard geometric approach to a measure of entanglement of a pure state, $sin^2theta$ is used, where $theta$ is the angle between the state to the closest separable state of products of normalized qubit states. We consider here a generalizati
The ability to simulate one Hamiltonian with another is an important primitive in quantum information processing. In this paper, a simulation method for arbitrary $sigma_z otimes sigma_z$ interaction based on Hadamard matrices (quant-ph/9904100) is g