ﻻ يوجد ملخص باللغة العربية
Recently, Coffman, Kundu, and Wootters introduced the residual entanglement for three qubits to quantify the three-qubit entanglement in Phys. Rev. A 61, 052306 (2000). In Phys. Rev. A 65, 032304 (2007), we defined the residual entanglement for $n$ qubits, whose values are between 0 and 1. In this paper, we want to show that the residual entanglement for $n$ qubits is a natural measure of entanglement by demonstrating the following properties. (1). It is SL-invariant, especially LU-invariant. (2). It is an entanglement monotone. (3). It is invariant under permutations of the qubits. (4). It vanishes or is multiplicative for product states.
Beyond the simplest case of bipartite qubits, the composite Hilbert space of multipartite systems is largely unexplored. In order to explore such systems, it is important to derive analytic expressions for parameters which characterize the systems st
We propose a measure of entanglement that can be computed for any pure state of an $M$-qubit system. The entanglement measure has the form of a distance that we derive from an adapted application of the Fubini-Study metric. This measure is invariant
Based on the monogamy of entanglement, we develop the technique of quantum conditioning to build an {it additive} entanglement measure: the conditional entanglement of mutual information. Its {it operational} meaning is elaborated to be the minimal n
We introduce a new measure for the genuinely N-partite (all-party) entanglement of N-qubit states using the trace distance metric, and find an algebraic formula for the GHZ-diagonal states. We then use this formula to show how the all-party entanglem
We analyze entanglement and nonlocal properties of the convex set of symmetric $N$-qubits states which are diagonal in the Dicke basis. First, we demonstrate that within this set, positivity of partial transposition (PPT) is necessary and sufficient