ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological superconductivity in full shell proximitized nanowires

191   0   0.0 ( 0 )
 نشر من قبل Roman Lutchyn
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a new model system supporting Majorana zero modes based on semiconductor nanowires with a full superconducting shell. We demonstrate that, in the presence of spin-orbit coupling in the semiconductor induced by a radial electric field, the winding of the superconducting order parameter leads to a topological phase supporting Majorana zero modes. The topological phase persists over a large range of chemical potentials and can be induced by a predictable and weak magnetic field piercing the cylinder. The system can be readily realized in semiconductor nanowires covered by a full superconducting shell, opening a pathway for realizing topological quantum computing proposals.

قيم البحث

اقرأ أيضاً

A superconductor with $p_x+ip_y$ order has long fascinated the physics community because vortex defects in such a system host Majorana zero modes. Here we propose a simple construction of a chiral superconductor using proximitized quantum wires and t wist angle engineering as basic ingredients. We show that a weakly coupled parallel array of such wires forms a gapless $p$-wave superconductor. Two such arrays, stacked on top of one another with a twist angle close to $90^circ$, spontaneously break time reversal symmetry and form a robust, fully gapped $p_x+ip_y$ superconductor. We map out topological phases of the proposed system, demonstrate existence of Majorana zero modes in vortices, and discuss prospects for experimental realization.
We show that semiconductor nanowires coupled to an s-wave superconductor provide a playground to study effects of interactions between different topological superconducting phases supporting Majorana zero-energy modes. We consider quasi-one dimension al system where the topological phases emerge from different transverse subbands in the nanowire. In a certain parameter space, we show that there is a multicritical point in the phase diagram where the low-energy theory is equivalent to the one describing two coupled Majorana chains. We study effect of interactions as well as symmetry-breaking perturbations on the topological phase diagram in the vicinity of this multicritical point. Our results shed light on the stability of the topological phase around the multicritical point and have important implications for the experiments on Majorana nanowires.
Motivated by a recent experiment in which zero-bias peaks have been observed in scanning tunneling microscopy (STM) experiments performed on chains of magnetic atoms on a superconductor, we show, by generalizing earlier work, that a multichannel ferr omagnetic wire deposited on a spin-orbit coupled superconducting substrate can realize a non-trivial chiral topological superconducting state with Majorana bound states localized at the wire ends. The non-trivial topological state occurs for generic parameters requiring no fine tuning, at least for very large exchange spin splitting in the wire. We theoretically obtain the signatures which appear in the presence of an arbitrary number of Majorana modes in multi-wire systems incorporating the role of finite temperature, finite potential barrier at the STM tip, and finite wire length. These signatures are presented in terms of spatial profiles of STM differential conductance which clearly reveal zero energy Majorana end modes and the prediction of a multiple Majorana based fractional Josephson effect. A substantial part of this work is devoted to a detailed critical comparison between our theory and the recent STM experiment claiming the observation of Majorana fermions. The conclusion of this detailed comparison is that although the experimental observations are not manifestly inconsistent with our theoretical findings, the very small topological superconducting gap and the very high temperature of the experiment make it impossible to decisively verify the existence of a localized Majorana zero mode, as the spectral weight of the Majorana mode is necessarily spread over a very broad energy regime exceeding the size of the gap. Thus, although the experimental findings are indeed consistent with a highly broadened and weakened Majorana zero bias peak, much lower experimental temperatures are necessary for any definitive conclusion.
In this letter we report on proximity superconductivity induced in CdTe-HgTe core-shell nanowires, a quasi-one-dimensional heterostructure of the topological insulator HgTe. We demonstrate a Josephson supercurrent in our nanowires contacted with supe rconducting Al leads. The observation of a sizable $I_c R_n$ product, a positive excess current and multiple Andreev reflections up to fourth order further indicate a high interface quality of the junctions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا