ﻻ يوجد ملخص باللغة العربية
We study the fluctuations of the Gaussian model, with conservation of the order parameter, evolving in contact with a thermal bath quenched from inverse temperature $beta _i$ to a final one $beta _f$. At every time there exists a critical value $s_c(t)$ of the variance $s$ of the order parameter per degree of freedom such that the fluctuations with $s>s_c(t)$ are characterized by a macroscopic contribution of the zero wavevector mode, similarly to what occurs in an ordinary condensation transition. We show that the probability of fluctuations with $s<inf_t [s_c(t)]$, for which condensation never occurs, rapidly converges towards a stationary behavior. By contrast, the process of populating the zero wavevector mode of the variance, which takes place for $s>inf _t [s_c(t)]$, induces a slow non-equilibrium dynamics resembling that of systems quenched across a phase transition.
We study the dynamics of the fluctuations of the variance $s$ of the order parameter of the Gaussian model, following a temperature quench of the thermal bath. At each time $t$, there is a critical value $s_c(t)$ of $s$ such that fluctuations with $s
We propose a modified voter model with locally conserved magnetization and investigate its phase ordering dynamics in two dimensions in numerical simulations. Imposing a local constraint on the dynamics has the surprising effect of speeding up the ph
This article presents a new numerical scheme for the discretization of dissipative particle dynamics with conserved energy. The key idea is to reduce elementary pairwise stochastic dynamics (either fluctuation/dissipation or thermal conduction) to ef
We investigate the coarsening dynamics in the two-dimensional Hamiltonian XY model on a square lattice, beginning with a random state with a specified potential energy and zero kinetic energy. Coarsening of the system proceeds via an increase in the
We consider the dynamics of fluctuations in the quantum asymmetric simple exclusion process (Q-ASEP) with periodic boundary conditions. The Q-ASEP describes a chain of spinless fermions with random hoppings that are induced by a Markovian environment