ﻻ يوجد ملخص باللغة العربية
We propose a modified voter model with locally conserved magnetization and investigate its phase ordering dynamics in two dimensions in numerical simulations. Imposing a local constraint on the dynamics has the surprising effect of speeding up the phase ordering process. The system is shown to exhibit a scaling regime characterized by algebraic domain growth, at odds with the logarithmic coarsening of the standard voter model. A phenomenological approach based on cluster diffusion and similar to Smoluchowski ripening correctly predicts the observed scaling regime. Our analysis exposes unexpected complexity in the phase ordering dynamics without thermodynamic potential.
By considering three different spin models belonging to the generalized voter class for ordering dynamics in two dimensions [I. Dornic, textit{et al.} Phys. Rev. Lett. textbf{87}, 045701 (2001)], we show that they behave differently from the linear v
We study the voter model and related random-copying processes on arbitrarily complex network structures. Through a representation of the dynamics as a particle reaction process, we show that a quantity measuring the degree of order in a finite system
We study a generalization of the voter model on complex networks, focusing on the scaling of mean exit time. Previous work has defined the voter model in terms of an initially chosen node and a randomly chosen neighbor, which makes it difficult to di
We study the fluctuations of the Gaussian model, with conservation of the order parameter, evolving in contact with a thermal bath quenched from inverse temperature $beta _i$ to a final one $beta _f$. At every time there exists a critical value $s_c(
This article presents a new numerical scheme for the discretization of dissipative particle dynamics with conserved energy. The key idea is to reduce elementary pairwise stochastic dynamics (either fluctuation/dissipation or thermal conduction) to ef