ﻻ يوجد ملخص باللغة العربية
We study the dynamics of the fluctuations of the variance $s$ of the order parameter of the Gaussian model, following a temperature quench of the thermal bath. At each time $t$, there is a critical value $s_c(t)$ of $s$ such that fluctuations with $s>s_c(t)$ are realized by condensed configurations of the systems, i.e., a single degree of freedom contributes macroscopically to $s$. This phenomenon, which is closely related to the usual condensation occurring on average quantities, is usually referred to as {it condensation of fluctuations}. We show that the probability of fluctuations with $s<inf_t [s_c(t)]$, associated to configurations that never condense, after the quench converges rapidly and in an adiabatic way towards the new equilibrium value. The probability of fluctuations with $s>inf_t [s_c(t)]$, instead, displays a slow and more complex behavior, because the macroscopic population of the condensing degree of freedom is involved.
We study the fluctuations of the Gaussian model, with conservation of the order parameter, evolving in contact with a thermal bath quenched from inverse temperature $beta _i$ to a final one $beta _f$. At every time there exists a critical value $s_c(
We derive a simple formula for the fluctuations of the time average around the thermal mean for overdamped Brownian motion in a binding potential U(x). Using a backward Fokker-Planck equation, introduced by Szabo, et al. in the context of reaction ki
Stochastic Langevin dynamics has been traditionally used as a tool to describe non-equilibrium processes. When utilized in systems with collective modes, traditional Langevin dynamics relaxes all modes indiscriminately, regardless of their wavelength
Dissipative particle dynamics (DPD) belongs to a class of models and computational algorithms developed to address mesoscale problems in complex fluids and soft matter in general. It is based on the notion of particles that represent coarse-grained p
We investigate the dissipative dynamics yielded by the Lindblad equation within the coexistence region around a first order phase transition. In particular, we consider an exactly-solvable fullyconnected quantum Ising model with n-spin exchange (n >