ﻻ يوجد ملخص باللغة العربية
We prove existence and uniqueness of distributional, bounded, nonnegative solutions to a fractional filtration equation in ${mathbb R}^d$. With regards to uniqueness, it was shown even for more general equations in [19] that if two bounded solutions $u,w$ of (1.1) satisfy $u-win L^1({mathbb R}^dtimes(0,T))$, then $u=w$. We obtain here that this extra assumption can in fact be removed and establish uniqueness in the class of merely bounded solutions, provided they are nonnegative. Indeed, we show that a minimal solution exists and that any other solution must coincide with it. As a consequence, distributional solutions have locally-finite energy.
We prove uniqueness for weak solutions to abstract parabolic equations with the fractional Marchaud or Caputo time derivative. We consider weak solutions in time for divergence form equations when the fractional derivative is transferred to the test function.
In this paper we study the Cauchy problem for the Landau Hamiltonian wave equation, with time dependent irregular (distributional) electromagnetic field and similarly irregular velocity. For such equations, we describe the notion of a `very weak solu
In this paper we prove the existence of weak solutions for a thermodynamically consistent phase-field model introduced in [26] in two and three dimensions of space. We use a notion of solution inspired by [18], where the pointwise internal energy bal
We show that the Hunter-Saxton equation $u_t+uu_x=frac14big(int_{-infty}^x dmu(t,z)- int^{infty}_x dmu(t,z)big)$ and $mu_t+(umu)_x=0$ has a unique, global, weak, and conservative solution $(u,mu)$ of the Cauchy problem on the line.
For a class of Kirchhoff functional, we first give a complete classification with respect to the exponent $p$ for its $L^2$-normalized critical points, and show that the minimizer of the functional, if exists, is unique up to translations. Secondly,