ﻻ يوجد ملخص باللغة العربية
For a class of Kirchhoff functional, we first give a complete classification with respect to the exponent $p$ for its $L^2$-normalized critical points, and show that the minimizer of the functional, if exists, is unique up to translations. Secondly, we search for the mountain pass type critical point for the functional on the $L^2$-normalized manifold, and also prove that this type critical point is unique up to translations. Our proof relies only on some simple energy estimates and avoids using the concentration-compactness principles. These conclusions extend some known results in previous papers.
We consider a quasilinear KdV equation that admits compactly supported traveling wave solutions (compactons). This model is one of the most straightforward instances of degenerate dispersion, a phenomenon that appears in a variety of physical setting
We revisit the following nonlinear critical elliptic equation begin{equation*} -Delta u+Q(y)u=u^{frac{N+2}{N-2}},;;; u>0;;;hbox{ in } mathbb{R}^N, end{equation*} where $Ngeq 5.$ Although there are some existence results of bubbling solutions for pr
In this paper, we study the existence and asymptotic properties of solutions to the following fractional Kirchhoff equation begin{equation*} left(a+bint_{mathbb{R}^{3}}|(-Delta)^{frac{s}{2}}u|^{2}dxright)(-Delta)^{s}u=lambda u+mu|u|^{q-2}u+|u|^{p-2}u
In this paper, we consider the following Kirchhoff type equation $$ -left(a+ bint_{R^3}| abla u|^2right)triangle {u}+V(x)u=f(u),,,xinR^3, $$ where $a,b>0$ and $fin C(R,R)$, and the potential $Vin C^1(R^3,R)$ is positive, bounded and satisfies suitabl
In this paper we establish the orbital stability of standing wave solutions associated to the one-dimensional Schrodinger-Kirchhoff equation. The presence of a mixed term gives us more dispersion, and consequently, a different scenario for the stabil