ﻻ يوجد ملخص باللغة العربية
We show that the Hunter-Saxton equation $u_t+uu_x=frac14big(int_{-infty}^x dmu(t,z)- int^{infty}_x dmu(t,z)big)$ and $mu_t+(umu)_x=0$ has a unique, global, weak, and conservative solution $(u,mu)$ of the Cauchy problem on the line.
In the article a convergent numerical method for conservative solutions of the Hunter--Saxton equation is derived. The method is based on piecewise linear projections, followed by evolution along characteristics where the time step is chosen in order
We establish the existence of conservative solutions of the initial value problem of the two-component Hunter--Saxton system on the line. Furthermore we investigate the stability of these solutions by constructing a Lipschitz metric.
We study the Lipschitz stability in time for $alpha$-dissipative solutions to the Hunter-Saxton equation, where $alpha in [0,1]$ is a constant. We define metrics in both Lagrangian and Eulerian coordinates, and establish Lipschitz stability for those metrics.
In this paper we develop an existence theory for the Cauchy problem to the stochastic Hunter-Saxton equatio, and prove several properties of the blow-up of its solutions. An important part of the paper is the continuation of solutions to the stochast
We analyze stability of conservative solutions of the Cauchy problem on the line for the (integrated) Hunter-Saxton (HS) equation. Generically, the solutions of the HS equation develop singularities with steep gradients while preserving continuity of