ﻻ يوجد ملخص باللغة العربية
Until very recently we had as many theories to explain Fast Radio Bursts as we have observations of them. An explosion of data is coming, if not here already, and thus it is an opportune time to understand how we can use FRBs for cosmology. The HIRAX experiment, based mostly in South Africa, will be one such experiment, designed not only to observe large numbers of FRBs but also to localise them. In this short article we consider briefly, some ways in which HIRAX can change the landscape of FRB cosmology.
We compare the dispersion measure (DM) statistics of FRBs detected by the ASKAP and Parkes radio telescopes. We jointly model their DM distributions, exploiting the fact that the telescopes have different survey fluence limits but likely sample the s
The excessive dispersion measure (DM) of fast radio bursts (FRBs) has been proposed to be a powerful tool to study intergalactic medium (IGM) and to perform cosmography. One issue is that the fraction of baryons in the IGM, $f_{rm IGM}$, is not prope
In the last few years ARCADE 2, combined with older experiments, has detected an additional radio background, measured as a temperature and ranging in frequency from 22 MHz to 10 GHz, not accounted for by known radio sources and the cosmic microwave
Fast Radio Bursts (FRBs) are bright radio transients with millisecond duration at cosmological distances. Since compact dark matter/objects (COs) could act as lenses and cause split of this kind of very short duration signals, Mu$rm{tilde{n}}$oz et a
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a novel transit radio telescope operating across the 400-800-MHz band. CHIME is comprised of four 20-m x 100-m semi-cylindrical paraboloid reflectors, each of which has 256 dual-polarizati