ترغب بنشر مسار تعليمي؟ اضغط هنا

The CHIME Fast Radio Burst Project: System Overview

68   0   0.0 ( 0 )
 نشر من قبل Victoria Kaspi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a novel transit radio telescope operating across the 400-800-MHz band. CHIME is comprised of four 20-m x 100-m semi-cylindrical paraboloid reflectors, each of which has 256 dual-polarization feeds suspended along its axis, giving it a >200 square degree field-of-view. This, combined with wide bandwidth, high sensitivity, and a powerful correlator makes CHIME an excellent instrument for the detection of Fast Radio Bursts (FRBs). The CHIME Fast Radio Burst Project (CHIME/FRB) will search beam-formed, high time-and frequency-resolution data in real time for FRBs in the CHIME field-of-view. Here we describe the CHIME/FRB backend, including the real-time FRB search and detection software pipeline as well as the planned offline analyses. We estimate a CHIME/FRB detection rate of 2-42 FRBs/sky/day normalizing to the rate estimated at 1.4-GHz by Vander Wiel et al. (2016). Likely science outcomes of CHIME/FRB are also discussed. CHIME/FRB is currently operational in a commissioning phase, with science operations expected to commence in the latter half of 2018.



قيم البحث

اقرأ أيضاً

We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and non-repeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent non-repeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent non-repeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs - comprising a large fraction of the overall population - with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution of $alpha=-1.40pm0.11(textrm{stat.})^{+0.06}_{-0.09}(textrm{sys.})$, consistent with the $-3/2$ expectation for a non-evolving population in Euclidean space. We find $alpha$ is steeper for high-DM events and shallower for low-DM events, which is what would be expected when DM is correlated with distance. We infer a sky rate of $[820pm60(textrm{stat.})^{+220}_{-200}({textrm{sys.}})]/textrm{sky}/textrm{day}$ above a fluence of 5 Jy ms at 600 MHz, with scattering time at $600$ MHz under 10 ms, and DM above 100 pc cm$^{-3}$.
Polarimetric observations of Fast Radio Bursts (FRBs) are a powerful resource for better understanding these mysterious sources by directly probing the emission mechanism of the source and the magneto-ionic properties of its environment. We present a pipeline for analysing the polarized signal of FRBs captured by the triggered baseband recording system operating on the FRB survey of The Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB). Using a combination of simulated and real FRB events, we summarize the main features of the pipeline and highlight the dominant systematics affecting the polarized signal. We compare parametric (QU-fitting) and non-parametric (rotation measure synthesis) methods for determining the Faraday rotation measure (RM) and find the latter method susceptible to systematic errors from known instrumental effects of CHIME/FRB observations. These errors include a leakage artefact that appears as polarized signal near $rm{RMsim 0 ; rad , m^{-2}}$ and an RM sign ambiguity introduced by path length differences in the systems electronics. We apply the pipeline to a bright burst previously reported by citet[FRB 20191219F;][]{Leung2021}, detecting an $mathrm{RM}$ of $rm{+6.074 pm 0.006 pm 0.050 ; rad , m^{-2}}$ with a significant linear polarized fraction ($gtrsim0.87$) and strong evidence for a non-negligible circularly polarized component. Finally, we introduce an RM search method that employs a phase-coherent de-rotation algorithm to correct for intra-channel depolarization in data that retain electric field phase information, and successfully apply it to an unpublished FRB, FRB 20200917A, measuring an $mathrm{RM}$ of $rm{-1294.47 pm 0.10 pm 0.05 ; rad , m^{-2}}$ (the second largest unambiguous RM detection from any FRB source observed to date).
We present a synthesis of fast radio burst (FRB) morphology (the change in flux as a function of time and frequency) as detected in the 400-800 MHz octave by the FRB project on the Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB), using eve nts from the first CHIME/FRB catalog. The catalog consists of 61 bursts from 18 repeating sources, plus 474 one-off FRBs, detected between 2018 July 25 and 2019 July 2. We identify four observed archetypes of burst morphology (simple broadband, simple narrowband, temporally complex and downward drifting) and describe relevant instrumental biases that are essential for interpreting the observed morphologies. Using the catalog properties of the FRBs, we confirm that bursts from repeating sources, on average, have larger widths and we show, for the first time, that bursts from repeating sources, on average, are narrower in bandwidth. This difference could be due to a beaming or propagation effects, or it could be intrinsic to the populations. We discuss potential implications of these morphological differences for using FRBs as astrophysical tools.
We report the detection of a single burst from the first-discovered repeating Fast Radio Burst source, FRB 121102, with CHIME/FRB, which operates in the frequency band 400-800 MHz. The detected burst occurred on 2018 November 19 and its emission exte nds down to at least 600 MHz, the lowest frequency detection of this source yet. The burst, detected with a significance of 23.7$sigma$, has fluence 12$pm$3 Jy ms and shows complex time and frequency morphology. The 34 ms width of the burst is the largest seen for this object at any frequency. We find evidence of sub-burst structure that drifts downward in frequency at a rate of -3.9$pm$0.2 MHz ms$^{-1}$. Our best fit tentatively suggests a dispersion measure of 563.6$pm$0.5 pc cm$^{-3}$, which is ${approx}$1% higher than previously measured values. We set an upper limit on the scattering time at 500 MHz of 9.6 ms, which is consistent with expectations from the extrapolation from higher frequency data. We have exposure to the position of FRB 121102 for a total of 11.3 hrs within the FWHM of the synthesized beams at 600 MHz from 2018 July 25 to 2019 February 25. We estimate on the basis of this single event an average burst rate for FRB 121102 of 0.1-10 per day in the 400-800 MHz band for a median fluence threshold of 7 Jy ms in the stated time interval.
We report on the discovery and analysis of bursts from nine new repeating fast radio burst (FRB) sources found using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope. These sources span a dispersion measure (DM) range of 195 to 13 80 pc cm$^{-3}$. We detect two bursts from three of the new sources, three bursts from four of the new sources, four bursts from one new source, and five bursts from one new source. We determine sky coordinates of all sources with uncertainties of $sim$10$^prime$. We detect Faraday rotation measures for two sources, with values $-20(1)$ and $-499.8(7)$ rad m$^{-2}$, that are substantially lower than the RM derived from bursts emitted by FRB 121102. We find that the DM distribution of our events, combined with the nine other repeaters discovered by CHIME/FRB, is indistinguishable from that of thus far non-repeating CHIME/FRB events. However, as previously reported, the burst widths appear statistically significantly larger than the thus far non-repeating CHIME/FRB events, further supporting the notion of inherently different emission mechanisms and/or local environments. These results are consistent with previous work, though are now derived from 18 repeating sources discovered by CHIME/FRB during its first year of operation. We identify candidate galaxies that may contain FRB 190303.J1353+48 (DM = 222.4 pc cm$^{-3}$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا