ﻻ يوجد ملخص باللغة العربية
The excessive dispersion measure (DM) of fast radio bursts (FRBs) has been proposed to be a powerful tool to study intergalactic medium (IGM) and to perform cosmography. One issue is that the fraction of baryons in the IGM, $f_{rm IGM}$, is not properly constrained. Here we propose a method of estimating $f_{rm IGM}$ using a putative sample of FRBs with the measurements of both DM and luminosity distance $d_{rm L}$. The latter can be obtained if the FRB is associated with a distance indicator (e.g. a gamma-ray burst or a gravitational wave event), or the redshift $z$ of the FRB is measured and $d_{rm L}$ at the corresponding $z$ is available from other distance indicators (e.g. type Ia supernovae) at the same redshift. Since $d_{rm L}/{rm DM}$ essentially does not depend on cosmological parameters, our method can determine $f_{rm IGM}$ independent of cosmological parameters. We parameterize $f_{rm IGM}$ as a function of redshift and model the DM contribution from a host galaxy as a function of star formation rate. Assuming $f_{rm IGM}$ has a mild evolution with redshift with a functional form and by means of Monte Carlo simulations, we show that an unbiased and cosmology-independent estimate of the present value of $f_{rm IGM}$ with a $sim 12%$ uncertainty can be obtained with 50 joint measurements of $d_{rm L}$ and DM. In addition, such a method can also lead to a measurement of the mean value of DM contributed from the local host galaxy.
Five fast radio bursts (FRBs), including three apparently non-repeating ones FRB 180924, FRB 181112, and FRB 190523, and two repeaters, FRB 121102 and FRB 180916.J0158+65, have already been localized so far. We apply a method developed recently by us
Until very recently we had as many theories to explain Fast Radio Bursts as we have observations of them. An explosion of data is coming, if not here already, and thus it is an opportune time to understand how we can use FRBs for cosmology. The HIRAX
We compare the dispersion measure (DM) statistics of FRBs detected by the ASKAP and Parkes radio telescopes. We jointly model their DM distributions, exploiting the fact that the telescopes have different survey fluence limits but likely sample the s
Fast Radio Bursts (FRBs) are bright radio transients with millisecond duration at cosmological distances. Since compact dark matter/objects (COs) could act as lenses and cause split of this kind of very short duration signals, Mu$rm{tilde{n}}$oz et a
The dispersion measure (DM) of fast radio bursts (FRBs) encode the integrated electron density along the line-of-sight, which is dominated by the intergalactic medium (IGM) contribution in the case of extragalactic FRBs. In this paper, we show that i