ﻻ يوجد ملخص باللغة العربية
One of the more promising observables to probe the high energy regime of the QCD dynamics in the future Electron-Ion Colliders (EIC) is the exclusive vector meson production cross section in coherent and incoherent interactions. Such processes measure the average spatial distribution of gluons in the target as well the fluctuations and correlations in the gluon density. In this paper we present a comprehensive analysis of the energy, photon virtuality, atomic number and momentum transfer dependencies of the coherent and incoherent cross sections considering two different models for the nuclear profile function. In particular, we present the predictions of the hot-spot model, which assumes the presence of subnucleonic degrees of freedom and an energy-dependent profile. Our results indicate that the analysis of the ratio between the incoherent and coherent cross sections and the momentum transfer distributions in the future EIC can be useful to constrain the description of the hadronic structure at high energies.
In a previous publication, we have presented a model for the photoproduction of $mathrm{J/}psi$ vector mesons off protons, where the proton structure in the impact-parameter plane is described by an energy-dependent hot-spot profile. Here we extend t
The impact of nonlinear effects in the diffractive observables that will be measured in future electron-ion collisions is investigated. We present, for the first time, the predictions for the diffractive structure function and reduced cross sections
We analyse the possibilities for the study of inclusive diffraction offered by future electron--proton/nucleus colliders in the TeV regime, the Large Hadron-electron Collider as an upgrade of the HL-LHC and the Future Circular Collider in electron-ha
We present a revision of predictions for nuclear shadowing in deep-inelastic scattering at small Bjorken $x_{Bj}$ corresponding to kinematic regions accessible by the future experiments at electron-ion colliders. The nuclear shadowing is treated with
We study the strange vector meson ($K^*, bar K^*$) dynamics in relativistic heavy-ion collisions based on the microscopic Parton-Hadron-String Dynamics (PHSD) transport approach which incorporates partonic and hadronic degrees-of-freedom, a phase tra